THE ANNIHILATING-IDEAL GRAPH OF A RING

Farid Aliniaeifard, Mahmood Behboodi, and Yuanlin Li

Abstract

Let S be a semigroup with 0 and R be a ring with 1 . We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilatingideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph $\Gamma(S)$, and the other definition yields an undirected graph $\bar{\Gamma}(S)$. It is shown that $\Gamma(S)$ is not necessarily connected, but $\bar{\Gamma}(S)$ is always connected and $\operatorname{diam}(\bar{\Gamma}(S)) \leq 3$. For a ring R define a directed graph $\mathbb{A P O G}(R)$ to be equal to $\Gamma(\mathbb{P P O}(R)$), where $\mathbb{P} \mathbb{P}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph $\overline{\mathbb{A P O G}}(R)$ to be equal to $\bar{\Gamma}(\mathbb{P P} \mathbb{O}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if $\mathbb{A} \mathbb{P O}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that $\overline{\mathbb{A P O G}}(R)$ is a complete graph if and only if either $(D(R))^{2}=0, R$ is a direct product of two division rings, or R is a local ring with maximal ideal \mathfrak{m} such that $\mathbb{P} \mathbb{P}(R)=\left\{0, \mathfrak{m}, \mathfrak{m}^{2}, R\right\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n \times n}(R)$ where $n \geq 2$.

1. introduction

In [11], I. Beck associated to a commutative ring R its zero-divisor graph $G(R)$ whose vertices are all elements of R (including 0), and two distinct vertices a and b are adjacent if $a b=0$. In [10], Anderson and Livingston introduced and studied the subgraph $\Gamma(R)$ (of $G(R)$) whose vertices are the nonzero zero-divisors of R. This graph turns out to best exhibit the properties of the set of zero-divisors of R, and the ideas and problems introduced

[^0]in [10] were further studied in $[4,8,9]$. In [20], Redmond extended the definition of zero-divisor graph to non-commutative rings. Some fundamental results concerning zero-divisor graph for a non-commutative ring were given in $[5,6,22]$. For a commutative ring R with 1 , denoted by $\mathbb{A}(R)$, the set of ideals with nonzero annihilator. The annihilating-ideal graph of R is an undirected graph $\mathbb{A} \mathbb{G}(R)$ with vertices $\mathbb{A}(R)^{*}=\mathbb{A}(R) \backslash\{0\}$, where distinct vertices I and J are adjacent if $I J=(0)$. The concept of the annihilating-ideal graph of a commutative ring was introduced in $[12,13]$ were further studied in $[1,2,3,7]$. For a ring R, let $D(R)$ be the set of one-sided zero-divisors of R and $\mathbb{P P O}(R)=\{A \subseteq R: A=I J$ where I and J are left or right ideals of $R\}$. Let S be a semigroup with 0 , and $D(S)$ be the set of one-sided zero-divisors of S. The zero-divisor graph of a commutative semigroup is an undirected graph with vertices $Z(S)^{*}$ (the set of non-zero zero-divisors) and two distinct vertices a and b are adjacent if $a b=0$. The zero-divisor graph of a commutative semigroup was introduced in [15] and further studied in [14, 23, 24, 25].

Let Γ be a graph. For vertices x and y of Γ, let $d(x, y)$ be the length of a shortest path from x to $y(d(x, x)=0$ and $d(x, y)=\infty$ if there is no such a path). The diameter of Γ is defined as $\operatorname{diam}(\Gamma)=\sup \{d(x, y) \mid x$ and y are vertices of $\Gamma\}$. The girth of Γ, denoted by $\operatorname{gr}(\Gamma)$, is the length of a shortest cycle in $\Gamma(\operatorname{gr}(\Gamma)=\infty$ if Γ contains no cycles $)$.

In Section 2, we introduce a directed graph $\Gamma(S)$ for a semigroup S with 0 . We show that $\Gamma(S)$ is not necessarily connected. Then we find a necessarily and sufficient condition for $\Gamma(S)$ to be connected. After that we extend the annihilating-ideal graph to a (not necessarily commutative) ring. It is shown that $\mathbb{I P} \mathbb{P}(R)$ is a semigroup. We associate to a ring R a directed graph (denote by $\mathbb{A P O}(R))$ the zero-divisor graph of $\mathbb{P} \mathbb{O}(R)$, i.e., $\mathbb{A P O}(R)=\Gamma(\mathbb{P} \mathbb{P}(R))$. Then we show that R is an Artinian (resp., Noetherian) ring if and only if $\mathbb{A} \mathbb{P} \mathbb{G}(R)$ has DCC (resp., ACC) on some subset of its vertices. In Section 3 , we introduce an undirected graph $\bar{\Gamma}(S)$ for a semigroup S with 0 . We show that $\bar{\Gamma}(S)$ is always connected and $\operatorname{diam}(\bar{\Gamma}(S)) \leq 3$. Moreover, if $\bar{\Gamma}(S)$ contains a cycle, then $\operatorname{gr}(\bar{\Gamma}(S)) \leq 4$. After that we define an undirected graph which extends the annihilating-ideal graph to a not necessarily commutative ring. We associate to a ring R an undirected graph (denoted by $\overline{\mathbb{A P O G}}(R)$) the undirected zero-divisor graph of $\mathbb{I P O}(R)$, i.e., $\overline{\mathbb{A P O G}}(R)=\bar{\Gamma}(\mathbb{I P O}(R))$. Finally, we characterize rings whose undirected annihilating-ideal graphs are complete graphs. In Section 4, we investigate the undirected annihilating-ideal graphs of matrix rings over commutative rings. It is shown that diam $\left(\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right) \geq\right.$ 2 where $n \geq 2$. Also, we show that $\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right) \geq \operatorname{diam}(\overline{\mathbb{A P O G}}(R))\right.$.

2. Directed annihilating-ideal graph of a ring

Let S be a semigroup with 0 and $D(S)$ denote the set of one-sided zerodivisors of S. We associate to S a directed graph $\Gamma(S)$ with vertices set $D(S)^{*}=$
$D(S) \backslash\{0\}$ and $a \rightarrow b$ if $a b=0$. In this section, we investigate the properties of $\Gamma(S)$ and we first show the following result.

Proposition 2.1. Let R be a ring. Then $\mathbb{P} \mathbb{P}(R)$ is a semigroup.
Proof. Let $A, B \in \mathbb{I P}(1)$. Then there exist left or right ideals $I_{1}, J_{1}, I_{2}, J_{2}$ of R such that $A=I_{1} J_{1}$ and $B=I_{2} J_{2}$. We show that $A B=\left(I_{1} J_{1}\right)\left(I_{2} J_{2}\right) \in \mathbb{I P O}(R)$.

Case 1: J_{1} is a left ideal. Then $A B=I_{1}\left(J_{1} I_{2} J_{2}\right) \in \mathbb{P} \mathbb{P}(R)$ (as $J_{1} I_{2} J_{2}$ is a left ideal of R).

Case 2: J_{1} is a right ideal and either I_{2} is a left ideal or J_{2} is a right ideal. Then $A B=\left(I_{1} J_{1}\right)\left(I_{2} J_{2}\right) \in \mathbb{P} \mathbb{P}(R)$.

Case 3: J_{1} is a right ideal, I_{2} is a right ideal, and J_{2} is a left ideal. Then $A B=\left(I_{1} J_{1} I_{2}\right) J_{2} \in \mathbb{I P O}(R)$.

Thus $\mathbb{I P} \mathbb{P}(R)$ is multiplicatively closed. Since the multiplication is associative, $\mathbb{I P} \mathbb{P}(R)$ is a semigroup.

It was shown in [15, Theorem 1.2] that the zero-divisor graph of a commutative semigroup S is connected and $\operatorname{diam}(\Gamma(S)) \leq 3$. In the following example we show that $\Gamma(S)$ is not necessarily connected when S is a non-commutative semigroup.

Example 2.2. Let K be a field and $V=\oplus_{i=1}^{\infty} K$. Then $R=H O M_{K}(V, V)$, under the point-wise addition and the multiplication taken to be the composition of functions, is an infinite non-commutative ring with identity. Let $\pi_{1}: V \rightarrow V$ be defined by $\left(a_{1}, a_{2}, \ldots\right) \mapsto\left(a_{1}, 0, \ldots\right)$ and $f: V \rightarrow V$ be defined by $\left(a_{1}, a_{2}, \ldots\right) \mapsto\left(0, a_{1}, a_{2}, \ldots\right)$. Then $\pi_{1}, f \in R$. Note that $\left(R \pi_{1}\right)(f R)=0$, so $\Gamma(\mathbb{P} \mathbb{P}(R)) \neq \emptyset$. However, $\Gamma(\mathbb{T P O}(R))$ is not connected as there is no path leading from the vertex $(f R)$ to any other vertex of $\Gamma(\mathbb{P P O}(R))$. This is because there exists $g: V \rightarrow V$ given by $\left(a_{1}, a_{2}, \ldots\right) \mapsto\left(a_{2}, a_{3}, \ldots\right)$ and $g \in R$ such that $g f=1_{R}$.

For a semigroup S, let

$$
A^{l}(S)=\left\{a \in D(S)^{*}: \text { there exists } b \in D(R)^{*} \text { such that } b a=0\right\}
$$

and

$$
A^{r}(S)=\left\{a \in D(S)^{*}: \text { there exists } b \in D(R)^{*} \text { such that } a b=0\right\}
$$

Next we show that $\Gamma(S)$ is connected if and only if $A^{l}(S)=A^{r}(S)$. Moreover, if $\Gamma(S)$ is connected, then $\operatorname{diam}(\Gamma(S)) \leq 3$.

Theorem 2.3. Let S be a semigroup. Then $\Gamma(S)$ is connected if and only if $A^{l}(S)=A^{r}(S)$. Moreover, if $\Gamma(S)$ is connected, then $\operatorname{diam}(\Gamma(S)) \leq 3$.

Proof. Suppose that $A^{l}(S)=A^{r}(S)$. Let a and b be distinct vertices of $\Gamma(S)$. Then $a \neq 0$ and $b \neq 0$. We show that there is always a path with length at most 3 from a to b.

Case 1: $a b=0$. Then $a \rightarrow b$ is a desired path.

Case 2: $a b \neq 0$. Then since $A^{l}(S)=A^{r}(S)$, there exists $c \in D(S) \backslash\{0\}$ such that $a c=0$ and $d \in D(S) \backslash\{0\}$ such that $d b=0$.

Subcase 2.1: $c=d$. Then $a \rightarrow c \rightarrow b$ is a desired path.
Subcase 2.2: $c \neq d$. If $c d=0$, then $a \rightarrow c \rightarrow d \rightarrow b$ is a desired path. If $c d \neq 0$, then $a \rightarrow c d \rightarrow b$ is a desired path.

Thus $\Gamma(S)$ is connected and $\operatorname{diam}(\Gamma(S)) \leq 3$.
Conversely, if $\Gamma(S)$ is connected, then it is easy to show that $A^{l}(S)=A^{r}(S)$.

Now, we define a directed graph which extends the annihilating-ideal graph to an arbitrary ring. We associate to a ring R a directed graph (denoted by $\mathbb{A P O G}(R))$ the zero-divisor graph of $\mathbb{P P} \mathbb{O}(R)$, i.e., $\mathbb{A P O} \mathbb{G}(R)=\Gamma(\mathbb{P} \mathbb{P}(R))$.

Corollary 2.4. Let R be a ring. Then $\mathbb{A P O G}(R)$ is connected if and only if $A^{l}(\mathbb{P} \mathbb{P}(R))=A^{r}(\mathbb{I P O}(R))$. Moreover, if $\mathbb{A P O G}(R)$ is connected, then $\operatorname{diam}(\mathbb{A P O G}(R)) \leq 3$.
Proof. Since $\mathbb{A} \mathbb{P} \mathbb{G}(R)$ is equal to $\Gamma(\mathbb{P} \mathbb{P}(R))$, it follows from Theorem 2.3 that $\mathbb{A P O} \mathbb{G}(R)$ is a connected if and only if $A^{l}(\mathbb{I P O}(R))=A^{r}(\mathbb{P P O}(R))$. Also, if $\mathbb{A} \mathbb{P O} \mathbb{G}(R)$ is connected, then $\operatorname{diam}(\mathbb{A} \mathbb{P O} \mathbb{G}(R)) \leq 3$.

Recall that a Duo ring is a ring in which every one-sided ideal is a two-sided ideal.

Proposition 2.5. Let R be an Artinian Duo ring. Then

$$
A^{l}(\mathbb{I P O}(R))=A^{r}(\mathbb{I P} \mathbb{P}(R))=\mathbb{I P} \mathbb{P}(R) \backslash\{0, R\}
$$

Moreover, $\mathbb{A P O G}(R)$ is connected and $\operatorname{diam}(\mathbb{A} \mathbb{P O}(R)) \leq 3$.
Proof. Let R be a Duo ring. Then by [17, Lemma 4.2], $R=\left(R_{1}, \mathfrak{m}_{1}\right) \times$ $\left(R_{2}, \mathfrak{m}_{2}\right) \times \cdots \times\left(R_{n}, \mathfrak{m}_{n}\right)$, where each $R_{i}(1 \leq i \leq n)$ is an Artinian local ring with unique maximal ideal \mathfrak{m}_{i}. Let $A \in \mathbb{I P} \mathbb{P}(R) \backslash\{0, R\}$. Then $A=\left(I_{1} \times I_{2} \times \cdots \times I_{n}\right)$ $\left(J_{1} \times J_{2} \times \cdots \times J_{n}\right)$, where every $I_{i}(1 \leq i \leq n)$ is an one-sided ideal, so is every $J_{j}(1 \leq j \leq n)$. Since $A \neq R$, there exists I_{i} (or J_{j}) such that $I_{i} \neq R$ (or $J_{j} \neq R$). Without loss of generality we may assume that $I_{i} \neq R$. So $A=\left(I_{1} \times I_{2} \times \cdots \times I_{n}\right)\left(J_{1} \times J_{2} \times \cdots \times J_{n}\right) \subseteq\left(R_{1} \times \cdots \times I_{i} \times \cdots \times R_{n}\right)$ $\left(R_{1} \times \cdots \times R_{i} \times \cdots \times R_{n}\right)$. Suppose k is the smallest positive integer such that $I_{i}{ }^{k}=0$. Thus $\left(0 \times \cdots \times I_{i}^{k-1} \times \cdots \times 0\right)\left(\left(R_{1} \times \cdots \times I_{i} \times \cdots \times R_{n}\right)\left(R_{1} \times \cdots \times R_{i} \times\right.\right.$ $\left.\left.\cdots \times R_{n}\right)\right)=0$ and $\left(\left(R_{1} \times \cdots \times I_{i} \times \cdots \times R_{n}\right)\left(R_{1} \times \cdots \times R_{i} \times \cdots \times R_{n}\right)\right)(0 \times$ $\left.\cdots \times I_{i}^{k-1} \times \cdots \times 0\right)=0$. Therefore $A \in A^{l}(\mathbb{I P} \mathbb{P}(R))$ and $A \in A^{r}(\mathbb{P} \mathbb{P}(R))$. Thus $\mathbb{I P O}(R) \backslash\{0, R\} \subseteq A^{r}(\mathbb{P} \mathbb{P}(R))$ and $\mathbb{P P} \mathbb{O}(R) \backslash\{0, R\} \subseteq A^{l}(\mathbb{I P O}(R))$. We conclude that $A^{r}(\mathbb{P P}(R))=\mathbb{P} \mathbb{P}(R) \backslash\{0, R\}=A^{l}(\mathbb{P} \mathbb{P}(R))$.

The second part follows from Theorem 2.3.
It is well known that if $|D(R)| \geq 2$ is finite, then $|R|$ is finite. Let A, B be vertices of $\mathbb{A P O G}(R)$. We use $A \rightleftharpoons B$ if $A \rightarrow B$ or $A \leftarrow B$. For any vertices C and D of $\mathbb{A P O G}(R)$, let $\operatorname{ad}(C)=\{A$ is a vertex of $\mathbb{A P O G}(R): C=A$
or $C \rightleftharpoons A$ or there exists a vertex B of $\mathbb{A P O G}(R)$ such that $C \rightleftharpoons B \rightleftharpoons A\}$ and $\operatorname{adu}(D)=\bigcup_{C \subset D} \operatorname{ad}(C)$. We know that $\operatorname{ad}(C) \subseteq D(R)$. The following proposition shows that if a principal left or right ideal I of R is a vertex of $\mathbb{A} \mathbb{P} \mathbb{G}(R)$ and all left and right ideals of $\operatorname{ad}(I)$ have finite cardinality, then R has finite cardinality.

Proposition 2.6. Let R be a ring and I be a principal left or right ideal of R such that I is a vertex of $\mathbb{A P O}(R)$. If all left and right ideals of $\operatorname{ad}(I)$ have finite cardinality, then R has finite cardinality.

Proof. Without loss of generality, we may assume that I is a left principal ideal. Thus $I=R x$ for some non-zero $x \in R$. If $A n n_{l}(x)=0$, then $|R|=|I|<\infty$. So we may always assume that $A n n_{l}(x) \neq 0$.

Case 1: $I=A n n_{r}(x)$ and $A n n_{r}(x) A n n_{l}(x)=0$. Then

$$
I \rightarrow A n n_{l}(x)
$$

and so $A n n_{l}(x) \in \operatorname{ad}(I)$. Therefore, $A n n_{l}(x)$ is finite. Since $I \cong R / A n n_{l}(x)$, $|R|=|I|\left|A n n_{l}(x)\right|<\infty$.

Case 2: $I \neq A n n_{r}(x)$ and $A n n_{r}(x) A n n_{l}(x)=0$. If $A n n_{r}(x) \neq 0$, then

$$
I \rightarrow A n n_{r}(x) \rightarrow A n n_{l}(x)
$$

and so $A n n_{l}(x) \in \operatorname{ad}(I)$. Therefore, $A n n_{l}(x)$ is finite. Since $I \cong R / A n n_{l}(x)$, $|R|=|I|\left|A n n_{l}(x)\right|<\infty$. If $A n n_{r}(x)=0$, then since $R x$ is a vertex of $\mathbb{A} \mathbb{P} \mathbb{G}(R)$, there exists a (nonzero right ideal) J such that $J R x=0$ (replace J by $J R$ if necessary). Since $A n n_{r}(x)=0$, we have $x J$ is a nonzero right ideal and so

$$
A n n_{l}(x) \rightarrow x J \rightarrow I .
$$

Thus $A n n_{l}(x) \in \operatorname{ad}(I)$, so $A n n_{l}(x)$ is finite. Again, we have $|R|=|I|\left|A n n_{l}(x)\right|$ $<\infty$.

Case 3: $I \neq A n n_{r}(x)$ and $A n n_{r}(x) A n n_{l}(x) \neq 0$. Then

$$
A n n_{r}(x) \leftarrow I \rightarrow A n n_{r}(x) A n n_{l}(x) \rightarrow(x R)
$$

and so $(x R), A n n_{r}(x) \in \operatorname{ad}(I)$. Therefore, $(x R)$ and $A n n_{r}(x)$ are finite. Since $(x R) \cong R / A n n_{r}(x),|R|=|(x R)|\left|A n n_{r}(x)\right|<\infty$. This completes the proof.

Here is our main result in this section.
Theorem 2.7. Let R be a ring such that $\mathbb{A P O G}(R) \neq \emptyset$. Then R is Artinian (resp., Noetherian) if and only if for a left or right ideal I in the vertex set of $\mathbb{A} \mathbb{P} \mathbb{G}(R)$, adu (I) has $D C C$ (resp., $A C C$) on both its left and right ideals.
Proof. If R is Artinian, then $\mathbb{P} \mathbb{P}(R)$ has DCC on both its left ideals and right ideals. Thus for every left or right ideal of the vertex set of $\mathbb{A} \mathbb{P} \mathbb{O}(R)$, adu (I) has DCC on both its left and right ideals as adu $(I) \subseteq \mathbb{P} \mathbb{P}(R)$.

Conversely, without loss of generality let I be a left ideal of vertex set of $\mathbb{A P O G}(R)$ such that adu (I) has DCC on its left and right ideals. Assume that $x \in I$. We have the following cases:

Case 1: $x R x \neq\{0\}, A n n_{l}(x) \neq 0$, and $A n n_{r}(x) \neq 0$. Then

$$
(x R) \leftarrow A n n_{l}(x) \leftarrow x R x \rightarrow A n n_{r}(x) \leftarrow(R x)
$$

Therefore $(x R), A n n_{r}(x), A n n_{l}(x),(R x) \in \operatorname{ad}(x R x)$. Since $\operatorname{ad}(x R x) \subseteq \operatorname{adu}(I)$ and $\operatorname{adu}(I)$ has DCC on its left and right ideals, we conclude that $(R x)$ and $A n n_{l}(x)$ are left Artinian R-modules, and $(x R)$ and $A n n_{r}(x)$ are right Artinian R-modules. Since $(R x) \cong R / A n n_{l}(x)$ and $(x R) \cong R / A n n_{r}(x)$, by [18, (1.20)] we conclude that R is Artinian.

Case 2: $x R x=\{0\}, A n n_{l}(x) \neq 0$, and $A n n_{r}(x) \neq 0$. Then

$$
A n n_{l}(x) \rightarrow(x R) \rightarrow(R x) \rightarrow A n n_{r}(x)
$$

Since $\operatorname{ad}(R x) \subseteq \operatorname{adu}(I)$ and $\operatorname{adu}(I)$ has DCC on its left and right ideals, we conclude that $(R x)$ and $A n n_{l}(x)$ are left Artinian R-modules, and $(x R)$ and $A n n_{r}(x)$ are right Artinian R-modules. Since $(R x) \cong R / A n n_{l}(x)$ and $(x R) \cong$ $R / A n n_{r}(x)$, by [18, (1.20)] we conclude that R is Artinian.

Case 3: $\operatorname{Ann}_{l}(x)=\{0\}$. Then $R x \cong R$. Therefore, R is a left Artinian module. Since $R x$ is a vertex of $\mathbb{A P O G}(R)$, we have $A n n_{r}(x) \neq\{0\}$. So there exists $y \in D(R) \backslash\{0\}$ such that $x y=0$.

Subcase 3.1: $y R y \neq\{0\}$. If $A n n_{r}(y)=\{0\}$, then since

$$
R x \rightarrow y R,
$$

we have $y R \in \operatorname{adu}(I)$, so $y R$ is a Artinian right R-module. Note that $y R \cong R$. Therefore, R is a right Artinian module. If $A n n_{r}(y) \neq\{0\}$, then

$$
A n n_{r}(y) \leftarrow y R y \leftarrow y R x \rightarrow y R
$$

Therefore $(y R), A n n_{r}(y) \in \operatorname{ad}(y R x) \subseteq \operatorname{adu}(I)$. Since $\operatorname{adu}(I)$ has DCC on its right ideals, we conclude that $(y R)$ and $A n n_{r}(y)$ are right Artinian R-modules. Note that $(y R) \cong R / A n n_{r}(y)$, by $[18,(1.20)]$ we conclude that R is a right Artinian module.

Subcase 3.2: $y R y=\{0\}$. Then

$$
y R \leftarrow y R x \leftarrow R y \rightarrow A n n_{r}(y) .
$$

Since $(y R), A n n_{r}(y) \in \operatorname{ad}(y R x) \subseteq \operatorname{adu}(I)$, we conclude that $(y R)$ and $A n n_{r}(y)$ are right Artinian R-modules. Note that $(y R) \cong R / A n n_{r}(y)$, by [18, (1.20)] we conclude that R is a right Artinian module.

Case 4: $\operatorname{Ann}_{r}(x)=\{0\}$. Then $x R x \neq\{0\}$ and since $R x$ is a vertex of $\mathbb{A P O G}(R)$, we have $A n n_{l}(x) \neq\{0\}$. Therefore,

$$
(x R) \leftarrow A n n_{l}(x) \rightarrow x R x .
$$

We conclude that $x R, A n n_{l}(x) \in \operatorname{ad}(x R x) \subseteq \operatorname{adu}(I)$. Since $x R, R x, A n n_{l}(x) \in$ $\operatorname{adu}(I)$, we have $R x$ and $A n n_{l}(x)$ are left Artinian modules and $x R$ is a right

Artinian module. Note that $(R x) \cong R / A n n_{l}(x)$ and $(x R) \cong R / A n n_{r}(x)$. Again by $[18,(1.20)]$ we conclude that R is Artinian.
Corollary 2.8. Let R be a ring such that $\mathbb{A} \mathbb{P} \mathbb{G}(R) \neq \emptyset$. Then R is Artinian (resp., Noetherian) if and only if $\mathbb{A} \mathbb{P O G}(R)$ has $D C C$ (resp., $A C C$) on left and right ideals of its vertex set.

Proof. Since vertex set of $\mathbb{A P O} \mathbb{G}(R)$ is a subset of $\mathbb{P} \mathbb{P}(R)$, As in the proof of Theorem 2.7, if R is Artinian (resp., Noetherian), then $\mathbb{A P O G}(R)$ has DCC (resp., ACC) on left and right ideals of its vertex set.

Conversely, since for a left or right ideal I of the vertex set of $\mathbb{A P O G}(R)$, $\operatorname{adu}(I)$ is a subset of the vertex set of $\mathbb{A P O} \mathbb{G}(R)$, it follows from Theorem 2.7 that R is Artinian.

A directed graph Γ is called a tournament if for every two distinct vertices x and y of Γ exactly one of $x y$ and $y x$ is an edge of Γ. In other words, a tournament is a complete graph with exactly one direction assigned to each edge.

Proposition 2.9. Let R be a ring such that $A^{2} \neq\{0\}$ for every non-zero $A \in \mathbb{I P} \mathbb{O}(R)$ and $A^{l}(\mathbb{I P} \mathbb{O}(R)) \cap A^{r}(\mathbb{I P O}(R)) \neq \emptyset$. Then $\mathbb{A P O} \mathbb{G}(R)$ is not a tournament.

Proof. Assume $\mathbb{A P O G}(R)$ is a tournament. Since $A^{l}(\mathbb{P P O}(R)) \cap A^{r}(\mathbb{P P O}(R)) \neq$ \emptyset, there exists $B \in A^{l}(\mathbb{I P O}(R)) \cap A^{r}(\mathbb{I P O}(R))$, that is, there exist distinct non-zero $A, C \in \mathbb{P} \mathbb{P}(R)$ such that $A \rightarrow B \rightarrow C$ is a path in $\mathbb{A} \mathbb{P O} \mathbb{G}(R)$. If $C A \neq\{0\}$, then $B(C A)=(B C) A=\{0\}$ and $(C A) B=C(A B)=\{0\}$, which is a contradiction. So $C A=\{0\}$ and therefore $A C \neq\{0\}$ since $\mathbb{A P O} \mathbb{G}(R)$ is a tournament. Also, $A C \neq A$ (otherwise $A^{2}=(A C A C)=A(C A) C=\{0\}$) and similarly, $A C \neq C$. Let $a, a_{1} \in A$ and $c, c_{1} \in C$. Then we have $B \rightarrow C \rightarrow$ $\left(\left(a-a_{1} c\right) R\right)$ and $\left(R\left(c-a c_{1}\right)\right) \rightarrow A \rightarrow B$. As the above $\left(\left(a-a_{1} c\right) R\right) B=\{0\}$ and $B\left(R\left(c-a c_{1}\right)\right)=\{0\}$. Let $b \in B$ be an arbitrary element. Then $-a c b=$ $a_{1} b-a c b \in\left(\left(a-a_{1} c\right) R\right) B=\{0\}$ and $b a c=b c_{1}-b a c \in B\left(R\left(c-a c_{1}\right)\right)=\{0\}$. Therefore, $A C B=\{0\}$ and $B A C=\{0\}$. Thus both $A C \rightarrow B$ and $B \rightarrow A C$ are edges of $\mathbb{A P O G}(R)$. This is a contradiction, hence, $\mathbb{A P O G}(R)$ cannot be a tournament.

3. Undirected annihilating-ideal graph of a ring

Let S be a semigroup with 0 and recall that $D(S)$ denotes the set of onesided zero-divisors of S. We associate to S an undirected graph $\bar{\Gamma}(S)$ with vertices set $D(S)^{*}=D(S) \backslash\{0\}$ and two distinct vertices a and b are adjacent if $a b=0$ or $b a=0$. Similarly, we associate to a ring R an undirected graph (denoted by $\overline{\mathbb{A P O G}}(R)$) the undirected zero-divisor graph of $\mathbb{I P O}(R)$, i.e., $\overline{\mathbb{A P O G}}(R)=\bar{\Gamma}(\mathbb{P P O}(R))$. The only difference between $\mathbb{A P O G}(R)$ and $\overline{\mathbb{A P O G}}(R)$ is that the former is a directed graph and the latter is undirected (that is, these graphs share the same vertices and the same edges if directions
on the edges are ignored). If R is a commutative ring, this definition agrees with the previous definition of the annihilating-ideal graph. In this section we study the properties of $\bar{\Gamma}(S)$. We first show that $\bar{\Gamma}(S)$ is always connected with diameter at most 3 .

Theorem 3.1. Let S be a semigroup. Then $\bar{\Gamma}(S)$ is a connected graph and $\operatorname{diam}(\bar{\Gamma}(S)) \leq 3$.

Proof. Let a and b be distinct vertices of $\bar{\Gamma}(S)$. If $a b=0$ or $b a=0$, then $a-b$ is a path. Next assume that $a b \neq 0$ and $b a \neq 0$.

Case 1: $a^{2}=0$ and $b^{2}=0$. Then $a-a b-b$ is a path.
Case 2: $a^{2}=0$ and $b^{2} \neq 0$. Then there is a some $c \in D(S) \backslash\{a, b, 0\}$ such that either $c b=0$ or $b c=0$. If either $a c=0$ or $c a=0$, then $a-c-b$ is a path. If $a c \neq 0$ and $c a \neq 0$, then $a-c a-b$ is a path if $b c=0$ and $a-a c-b$ is a path if $c b=0$.

Case 3: $a^{2} \neq 0$ and $b^{2}=0$. We can use an argument similar to that of the above case to obtain a path.

Case 4: $a^{2} \neq 0$ and $b^{2} \neq 0$. Then there exist $c, d \in D(S) \backslash\{a, b, 0\}$ such that either $c a=0$ or $a c=0$ and either $d b=0$ or $b d=0$. If $b c=0$ or $c b=0$, then $a-c-b$ is a path. Similarly, if $a d=0$ or $d a=0, a-d-b$ is a path. So we may assume that $c \neq d$. If $c d=0$ or $d c=0$, then $a-c-d-b$ is a path. Thus we may further assume that $c d \neq 0, d c \neq 0, b c \neq 0, c b \neq 0, a d \neq 0$ and $d a \neq 0$. We divide the proof into 4 subcases.

Subcase 4.1: $a c=0$ and $d b=0$. Then $a-c d-b$ is a path.
Subcase 4.2: $a c=0$ and $b d=0$. Then $a-c b-d-b$ is a path.
Subcase 4.3: $c a=0$ and $b d=0$. Then $a-d c-b$ is a path.
Subcase 4.4: $c a=0$ and $d b=0 . a-b c-d-b$ is a path.
Thus $\bar{\Gamma}(S)$) is connected and $\operatorname{diam}(\bar{\Gamma}(S)) \leq 3$.
In [10], Anderson and Livingston proved that if $\Gamma(R)$ (the zero-divisor graph of a commutative ring R) contains a cycle, then $\operatorname{gr}(\Gamma(R)) \leq 7$. They also proved that $\operatorname{gr}(\Gamma(R)) \leq 4$ when R is Artinian and conjectured that this is the case for all commutative rings R. Their conjecture was proved independently by Mulay [19] and DeMeyer and Schneider [16]. Also, in [20], Redmond proved that if $\bar{\Gamma}(R)$ (the undirected zero-divisor graph of a non-commutative ring) contains a cycle, then $\operatorname{gr}(\bar{\Gamma}(R)) \leq 4$. The following is our first main result in this section which shows that for a (not necessarily commutative) semigroup S, if $\bar{\Gamma}(S)$ contains a cycle, then $\operatorname{gr}(\bar{\Gamma}(S)) \leq 4$.

Theorem 3.2. Let S be a semigroup. If $\bar{\Gamma}(S)$ contains a cycle, then $g r(\bar{\Gamma}(S)) \leq$ 4.

Proof. Let $a_{1}-a_{2}-\cdots-a_{n-1}-a_{n}-a_{1}$ be a cycle of shortest length in $\bar{\Gamma}(S)$. Assume that $\operatorname{gr}(\bar{\Gamma}(S))>4$, i.e., assume $n \geq 5$. Note that $a_{2} a_{n-1} \neq 0$ and $a_{n-1} a_{2} \neq 0$ (as $n \geq 5$). If $a_{2} a_{n-1} \notin\left\{a_{1}, a_{n}\right\}$, then $a_{1}-a_{2} a_{n-1}-a_{n}-a_{1}$ is a cycle of length 3 , yielding a contradiction. Also, if $a_{n-1} a_{2} \notin\left\{a_{1}, a_{n}\right\}$, then
$a_{1}-a_{n-1} a_{2}-a_{n}-a_{1}$ is a cycle of length 3 , yielding a contradiction. We have the following cases:

Case 1 : $a_{2} a_{n-1}=a_{1}$ and $a_{n-1} a_{2}=a_{n}$. If $a_{2} a_{3}=0$, then $a_{n} a_{3}=$ $\left(a_{n-1} a_{2}\right) a_{3}=0$. Therefore, $a_{1}-a_{2}-a_{3}-a_{n}-a_{1}$ is a cycle of length 4, yielding a contradiction. So, $a_{3} a_{2}=0$. Thus, $a_{3} a_{1}=a_{3}\left(a_{2} a_{n-1}\right)=0$. Therefore, $a_{1}-a_{3}-a_{4}-\cdots-a_{n-1}-a_{n}-a_{1}$ is a cycle of length $n-1$, yielding a contradiction.

Case 2 : $a_{2} a_{n-1}=a_{1}$ and $a_{n-1} a_{2}=a_{1}$. If $a_{2} a_{3}=0$, then $a_{1} a_{3}=$ $\left(a_{n-1} a_{2}\right) a_{3}=0$. Therefore, $a_{1}-a_{3}-a_{4}-\cdots-a_{n-1}-a_{n}-a_{1}$ is a cycle of length $n-1$, yielding a contradiction. So, $a_{3} a_{2}=0$. Thus, $a_{3} a_{1}=a_{3}\left(a_{2} a_{n-1}\right)=0$. Therefore, $a_{1}-a_{3}-a_{4}-\cdots-a_{n-1}-a_{n}-a_{1}$ is a cycle of length $n-1$, yielding a contradiction.

Case 3 : $a_{2} a_{n-1}=a_{n}$ and $a_{n-1} a_{2}=a_{1}$. If $a_{2} a_{3}=0$, then $a_{1} a_{3}=$ $\left(a_{n-1} a_{2}\right) a_{3}=0$. Therefore, $a_{1}-a_{3}-a_{4}-\cdots-a_{n-1}-a_{n}-a_{1}$ is a cycle of length $n-1$, yielding a contradiction. So, $a_{3} a_{2}=0$. Thus, $a_{3} a_{n}=a_{3}\left(a_{2} a_{n-1}\right)=0$. Therefore, $a_{1}-a_{2}-a_{3}-a_{n}-a_{1}$ is a cycle of length 4 , yielding a contradiction.

Case 4 : $a_{2} a_{n-1}=a_{n}$ and $a_{n-1} a_{2}=a_{n}$. If $a_{2} a_{3}=0$, then $a_{n} a_{3}=$ $\left(a_{n-1} a_{2}\right) a_{3}=0$. If $a_{3} a_{2}=0$, then $a_{3} a_{n}=a_{3}\left(a_{2} a_{n-1}\right)=0$. Therefore, $a_{1}-a_{2}-a_{3}-a_{n}-a_{1}$ is a cycle of length 4 , yielding a contradiction.

Since in all cases we have found contradictions, we conclude that if $\bar{\Gamma}(S)$ contains a cycle, then $\operatorname{gr}(\bar{\Gamma}(S)) \leq 4$.

Corollary 3.3. Let R be a ring. Then $\overline{\mathbb{A P O G}}(R)$ is a connected graph and $\operatorname{diam}(\overline{\mathbb{A P O G}}(R)) \leq 3$. Moreover, If $\overline{\mathbb{A P O G}}(R)$ contains a cycle, then

$$
\operatorname{gr}(\overline{\mathrm{APOG}}(R)) \leq 4
$$

Proof. Note that $\overline{\mathbb{A P O G}}(R)$ is equal to $\bar{\Gamma}(\mathbb{P P} \mathbb{O}(R))$. So by Theorem 3.1, $\overline{\mathbb{A P O G}}(R)$ is a connected graph and $\operatorname{diam}(\overline{\mathbb{A P O G}}(R)) \leq 3$. Also, by Theorem 3.2, if $\overline{\mathbb{A P O G}}(R)$ contains a cycle, then $\operatorname{gr}(\overline{\mathbb{A P O G}}(R)) \leq 4$.

For a not necessarily commutative ring R, we define a simple undirected graph $\bar{\Gamma}(R)$ with vertex set $D(R)^{*}$ (the set of all non-zero zero-divisors of R) in which two distinct vertices x and y are adjacent if and only if either $x y=0$ or $y x=0$ (see [20]). The Jacobson radical of R, denoted by $J(R)$, is equal to the intersection of all maximal right ideals of R. It is well-known that $J(R)$ is also equal to the intersection of all maximal left ideals of R. In our second main theorem in this section we characterize rings whose undirected annihilating-ideal graphs are complete graphs.

Theorem 3.4. Let R be a ring. Then $\overline{\mathbb{A P O G}}(R)$ is a complete graph if and only if either $(D(R))^{2}=0$, or R is a direct product of two division rings, or R is a local ring with maximal ideal \mathfrak{m} such that $\mathbb{I P} \mathbb{O}(R)=\left\{0, \mathfrak{m}, \mathfrak{m}^{2}, R\right\}$.
Proof. Assume that $\overline{\mathbb{A P O G}}(R)$ is a complete graph. If $\bar{\Gamma}(R)$ is a complete graph, then by [5, Theorem 5], either $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $D(R)^{2}=\{0\}$. So the forward direction holds. Next assume that $\bar{\Gamma}(R)$ is not a complete graph. So
there exist different vertices x and y of $\bar{\Gamma}(R)$ such that x and y are not adjacent. We have the following cases:

Case 1: $x \in A^{r}(R)$. Without loss of generality assume that $y \in A^{r}(R)$. If $R x \neq R y$, then since $\mathbb{A} \mathbb{P O} \mathbb{G}(R)$ is a complete graph, we have $R x$ is adjacent to $R y$ in $\overline{\mathbb{A P O G}}(R)$, so x and y are adjacent in $\bar{\Gamma}(R)$, yielding a contradiction. Thus $R x=R y$. Since $x \in A^{r}(R)$, there exists non-zero element $z \in D(R)$ such that $x z=0$. If $R x \subseteq z R$, then $(R x)^{2}=\{0\}$. So $(R x)(R y)=\{0\}$, and x and y are adjacent in $\bar{\Gamma}(R)$, yielding a contradiction. Therefore, $R x \nsubseteq z R$. If there exists a left or right ideal I of R expect $z R$ such that $I \nsubseteq R x$, then there exists nonzero element $s \in I \backslash R x$. Then $(R s+R x)(z R)=\{0\}$. Since $\overline{\mathbb{A P O G}}(R)$ is a complete graph $R x$ is adjacent to $(R s+R x)=\{0\}$. Thus $(R x)^{2}=\{0\}$, and so x and y are adjacent in $\bar{\Gamma}(R)$, yielding a contradiction. Therefore, $\{z R, R x\}$ is the set of nonzero proper left or right ideals of R. Thus by Corollary $2.8, R$ is an Artinian ring. We have the following subcases:

Subcase 1: $z R \nsubseteq R x$. Then $z R$ and $R x$ are maximal ideals. If $z R$ or $R x$ is not a two-sided ideal, then $z R=J(R)=R x$, yielding a contradiction. Therefore, $R x$ and $z R$ are two-sided ideals. Also, $R x$ and $z R$ are minimal ideals and so $R x \cap z R=\{0\}$. Thus by Brauer's Lemma (see [18, 10.22]), $(R x)^{2}=0$ or $R x=R e$, where e is a idempotent in R. If $(R x)^{2}=\{0\}$, then x is adjacent to y in $\bar{\Gamma}(R)$, yielding a contradiction. So $R x=R e$, where e is an idempotent in R. Therefore, $R=e R e \oplus e R(1-e) \oplus(1-e) R e \oplus(1-e) R(1-e)$. Since $\{z R, R x\}$ is the set of nonzero proper left or right ideals of R and $R x \cap z R=\{0\}$, we conclude that $R e=R x=e R$ and $(1-e) R=z R=R(1-e)$. Therefore, $(1-e) R e=(1-e) e R=\{0\}$ and $e R(1-e)=e(1-e) R=\{0\}$. So $R=$ $e R e \oplus(1-e) R(1-e)$. Since R is an Artinian ring with two nonzero left or right ideals, we conclude that $e R e$ and $(1-e) R(1-e)$ are division rings.

Subcase 2: $z R \subseteq R x$. Then $R x=D(R)$. If $(R x)^{2}=\{0\}$, then x is adjacent to y in $\bar{\Gamma}(R)$, yielding a contradiction. If $D(R)^{2} \neq 0$, then $D(R)^{2}=z R$. Therefore, R is a local ring with maximal ideal \mathfrak{m} such that $\mathbb{I P O}(R)=\left\{0, \mathfrak{m}, \mathfrak{m}^{2}, R\right\}$.

In summary, we obtain that either R is a direct product of two division rings, or R is a local ring with maximal ideal \mathfrak{m} such that $\mathbb{P P}(R)=\left\{0, \mathfrak{m}, \mathfrak{m}^{2}, R\right\}$. Thus the forward direction holds.

Case 2: $x \in A^{l}(R)$. Similar to Case 1, we conclude that either R is a direct product of two division rings, or R is a local ring with maximal ideal \mathfrak{m} such that $\mathbb{I P} \mathbb{O}(R)=\left\{0, \mathfrak{m}, \mathfrak{m}^{2}, R\right\}$. So the forward direction holds.

The converse is obvious.

4. Undirected annihilating-ideal graphs for matrix rings over commutative rings

In this section we investigate the undirected annihilating-ideal graphs of matrix rings over commutative rings. By Theorem 3.3, $\operatorname{diam}(\overline{\mathbb{A P Q G}}(R)) \leq 3$ for any ring R. In Proposition 4.1 we show that $\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right) \geq 2$
where $n \geq 2$. A natural question is whether or not $\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right) \geq$ $\operatorname{diam}(\overline{\mathbb{A P O G}}(R))$. We show that the answer to this question is affirmative.

Proposition 4.1. Let R be a commutative ring. Then

$$
\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right) \geq 2, \text { where } n \geq 2
$$

Proof. Let

$$
A=\left(M_{n}(R)\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]\right) \text { and } B=\left(\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] M_{n}(R)\right) .
$$

Since

$$
A\left(\left[\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] M_{n}(R)\right)=0 \text { and }\left(M_{n}(R)\left[\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]\right) B=0,
$$

we conclude that A and B are vertices in $\left.\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right)$. Note that

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]^{2} \neq 0 \text { and }\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] \in A \cap B,
$$

so $A B \neq 0$. Therefore, $\operatorname{diam}\left(\overline{\mathbb{A P Q G}}\left(M_{n}(R)\right)\right) \geq 2$.
Theorem 4.2. Let R be a commutative ring. Then $\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right) \geq$ $\operatorname{diam}(\mathbb{A G}(R))=\operatorname{diam}(\overline{\mathbb{A P O G}}(R))$.

Proof. By [12, Theorem 2.1], $\operatorname{diam}(\mathbb{A} \mathbb{G}(R)) \leq 3$.
Case 1: $\operatorname{diam}(\mathbb{A} \mathbb{G}(R)) \leq 2$. By Proposition 4.1, $\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right) \geq 2$. Thus $\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right) \geq \operatorname{diam}(\mathbb{A} \mathbb{G}(R))$.

Case 2: $\operatorname{diam}(\mathbb{A} \mathbb{G}(R))=3$. Then there exist vertices I, J, K, and L of $\mathbb{A} \mathbb{G}(R)$ such that $I-K-L-J$ is a shortest path between I and J. So $d(I, J)=3$. Since I and J are vertices of $\mathbb{A} \mathbb{G}(R), M_{n}(I)$ and $M_{n}(J)$ are vertices of $\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)$. Suppose that $\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right)=2$. So we can assume that there exists $\alpha=\left[a_{i j}\right] \in M_{n}(R)$ such that $M_{n}(I) \alpha=\alpha M_{n}(J)=0$. Without loss of generality, we may assume that $a_{11} \neq 0$. For every $a \in I$,

$$
\left[\begin{array}{ccccc}
a & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] A=0,
$$

so $a a_{11}=0$. Therefore $I\left(a_{11} R\right)=0$. For every $b \in J$,

$$
A\left[\begin{array}{ccccc}
b & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]=0
$$

Therefore $\left(a_{11} R\right) J=0$. Thus $I-\left(a_{11} R\right)-J$ is a path of length 2 in $\mathbb{A}(R)$, and so $d(I, J) \leq 2$, yielding a contradiction. Therefore, $\operatorname{diam}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right)=3$ and we are done.

It was shown in Corollary 3.3 that $\operatorname{gr}(\overline{\mathbb{A P O G}}(R)) \leq 4$. We now show that $\operatorname{gr}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right)=3$ where $n \geq 2$.

Proposition 4.3. Let R be a commutative ring. Then $\operatorname{gr}\left(\overline{\mathbb{A} \mathbb{P Q G}}\left(M_{n}(R)\right)\right)=3$ where $n \geq 2$.

Proof. Let

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right], B=\left[\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right],
$$

and

$$
C=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Then $\left(A M_{n}(R) A\right)-\left(B M_{n}(R) B\right)-\left(C M_{n}(R) C\right)$ is a cycle in $\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)$, so $\operatorname{gr}\left(\overline{\mathbb{A P O G}}\left(M_{n}(R)\right)\right)=3$.

References

[1] G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr, and F. Shahsavari, The classification of the annihilating-ideal graphs of commutative rings, Algebra Colloq. 21 (2014), no. 2, 249-256.
[2] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math. 312 (2012), no. 17, 2620-2626.
[3] , Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. 43 (2013), no. 5, 1415-1425.
[4] S. Akbari and M. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), no. 2, 847-855.
[5] , Zero-divisor graphs of non-commutative rings, J. Algebra 269 (2006), no. 2, 462-479.
[6] , On zero-divisor graphs of finite rings, J. Algebra 314 (2007), no. 1, 168-184.
[7] F. Aliniaeifard and M. Behboodi, Rings whose annihilating-ideal graphs have positive genus, J. Algebra Appl. 11 (2012), no. 3, 1250049, 13 pages.
[8] , Commutative rings whose zero-divisor graphs have positive genus, Comm. Algebra 41 (2013), no. 10, 3629-3634.
[9] D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221-241.
[10] D. F. Anderson and P. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[11] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[12] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739.
[13] _, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 741-753.
[14] F. DeMeyer and L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283 (2005), no. 1, 190-198.
[15] F. DeMeyer, T. McKenzie, and K. Schneider, The Zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), no. 2, 206-214.
[16] F. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, Commutative rings, 25-37, Nova Sci. Publ., Hauppauge, NY, 2002.
[17] N. S. Karamzadeh and O. A. S. Karamzadeh, On Artinian modules over Duo rings, Comm. Algebra 38 (2010), no. 9, 3521-3531.
[18] T. Y. Lam, A First Course in Non-Commutative Rings, Springer-Verlag, New York, 1991.
[19] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558.
[20] S. Redmond, The zero-divisor graph of a non-commutative ring, Commutative rings, 39-47, Nova Sci. Publ., Hauppauge, NY, 2002.
[21] , Structure in the zero-divisor graph of a noncommutative ring, Houston J. Math. 30 (2004), no. 2, 345-355.
[22] T. S. Wu, On directed zero-divisor graphs of finite rings, Discrete Math. 296 (2005), no. 1, 73-86.
[23] T. S. Wu, Q. Liu, and L. Chen, Zero-divisor semigroups and refinements of a star graph, Discrete Math. 309 (2009), no. 8, 2510-2518.
[24] T. S. Wu and D. C. Lu, Zero-divisor semigroups and some simple graphs, Comm. Algebra 34 (2006), no. 8, 3043-3052.
[25] , Sub-semigroups determined by the zero-divisor graph, Discrete Math. 308 (2008), no. 22, 5122-5135.

Farid Aliniaeifard
Department of Mathematics and Statistics
York University
Toronto, Ontario, Canada
E-mail address: faridanf@mathstat.yorku.ca

Mahmood Behboodi

Department of Mathematical of Sciences
Isfahan University of Technology
Isfahan, Iran
AND
School of Mathematics
Institute for Research in Fundamental Sciences
(IPM) P.O.Box: 19395-5746
Tehran, Iran
E-mail address: mbehbood@cc.iut.ac.ir
Yuanlin Li
Department of Mathematics
Brock University
St. Catharines, Ontario, Canada
E-mail address: yli@brocku.ca

[^0]: Received January 27, 2015.
 2010 Mathematics Subject Classification. 16D10, 16D25, 05C20, 05C12, 13E10, 16P60.
 Key words and phrases. rings, semigroups, zero-divisor graphs, annihilating-ideal graphs.
 The research of the second author was supported in part by a grant from IPM (No. 93130413).

 The research of the first and the third authors was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

 The research of third author was also supported in part by the National Natural Science Foundation of China (No. 11271250).

