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THE ANNIHILATING-IDEAL GRAPH OF A RING

Farid Aliniaeifard, Mahmood Behboodi, and Yuanlin Li

Abstract. Let S be a semigroup with 0 and R be a ring with 1. We ex-
tend the definition of the zero-divisor graphs of commutative semigroups
to not necessarily commutative semigroups. We define an annihilating-
ideal graph of a ring as a special type of zero-divisor graph of a semigroup.
We introduce two ways to define the zero-divisor graphs of semigroups.
The first definition gives a directed graph Γ(S), and the other definition

yields an undirected graph Γ(S). It is shown that Γ(S) is not necessar-

ily connected, but Γ(S) is always connected and diam(Γ(S)) ≤ 3. For a
ring R define a directed graph APOG(R) to be equal to Γ(IPO(R)), where
IPO(R) is a semigroup consisting of all products of two one-sided ideals of

R, and define an undirected graph APOG(R) to be equal to Γ(IPO(R)).
We show that R is an Artinian (resp., Noetherian) ring if and only if
APOG(R) has DCC (resp., ACC) on some special subset of its vertices.

Also, it is shown that APOG(R) is a complete graph if and only if either
(D(R))2 = 0, R is a direct product of two division rings, or R is a local
ring with maximal ideal m such that IPO(R) = {0,m,m2, R}. Finally,
we investigate the diameter and the girth of square matrix rings over
commutative rings Mn×n(R) where n ≥ 2.

1. introduction

In [11], I. Beck associated to a commutative ring R its zero-divisor graph
G(R) whose vertices are all elements of R (including 0), and two distinct ver-
tices a and b are adjacent if ab = 0. In [10], Anderson and Livingston in-
troduced and studied the subgraph Γ(R) (of G(R)) whose vertices are the
nonzero zero-divisors of R. This graph turns out to best exhibit the proper-
ties of the set of zero-divisors of R, and the ideas and problems introduced
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in [10] were further studied in [4, 8, 9]. In [20], Redmond extended the def-
inition of zero-divisor graph to non-commutative rings. Some fundamental
results concerning zero-divisor graph for a non-commutative ring were given
in [5, 6, 22]. For a commutative ring R with 1, denoted by A(R), the set
of ideals with nonzero annihilator. The annihilating-ideal graph of R is an
undirected graph AG(R) with vertices A(R)∗ = A(R)\ {0}, where distinct ver-
tices I and J are adjacent if IJ = (0). The concept of the annihilating-ideal
graph of a commutative ring was introduced in [12, 13] were further studied in
[1, 2, 3, 7]. For a ring R, let D(R) be the set of one-sided zero-divisors of R
and IPO(R) = {A ⊆ R : A = IJ where I and J are left or right ideals of R}.
Let S be a semigroup with 0, and D(S) be the set of one-sided zero-divisors of
S. The zero-divisor graph of a commutative semigroup is an undirected graph
with vertices Z(S)∗ (the set of non-zero zero-divisors) and two distinct ver-
tices a and b are adjacent if ab = 0. The zero-divisor graph of a commutative
semigroup was introduced in [15] and further studied in [14, 23, 24, 25].

Let Γ be a graph. For vertices x and y of Γ, let d(x, y) be the length of
a shortest path from x to y (d(x, x) = 0 and d(x, y) = ∞ if there is no such
a path). The diameter of Γ is defined as diam(Γ) = sup{d(x, y)| x and y are
vertices of Γ}. The girth of Γ, denoted by gr(Γ), is the length of a shortest
cycle in Γ (gr(Γ) =∞ if Γ contains no cycles).

In Section 2, we introduce a directed graph Γ(S) for a semigroup S with 0.
We show that Γ(S) is not necessarily connected. Then we find a necessarily
and sufficient condition for Γ(S) to be connected. After that we extend the
annihilating-ideal graph to a (not necessarily commutative) ring. It is shown
that IPO(R) is a semigroup. We associate to a ring R a directed graph (denote
by APOG(R)) the zero-divisor graph of IPO(R), i.e., APOG(R) = Γ(IPO(R)).
Then we show that R is an Artinian (resp., Noetherian) ring if and only if
APOG(R) has DCC (resp., ACC) on some subset of its vertices. In Section
3, we introduce an undirected graph Γ(S) for a semigroup S with 0. We
show that Γ(S) is always connected and diam(Γ(S)) ≤ 3. Moreover, if Γ(S)
contains a cycle, then gr(Γ(S)) ≤ 4. After that we define an undirected graph
which extends the annihilating-ideal graph to a not necessarily commutative
ring. We associate to a ring R an undirected graph (denoted by APOG(R)) the
undirected zero-divisor graph of IPO(R), i.e., APOG(R) = Γ(IPO(R)). Finally,
we characterize rings whose undirected annihilating-ideal graphs are complete
graphs. In Section 4, we investigate the undirected annihilating-ideal graphs of
matrix rings over commutative rings. It is shown that diam((APOG(Mn(R))) ≥
2 where n ≥ 2. Also, we show that diam(APOG(Mn(R)) ≥ diam(APOG(R)).

2. Directed annihilating-ideal graph of a ring

Let S be a semigroup with 0 and D(S) denote the set of one-sided zero-
divisors of S. We associate to S a directed graph Γ(S) with vertices setD(S)∗ =
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D(S) \ {0} and a → b if ab = 0. In this section, we investigate the properties
of Γ(S) and we first show the following result.

Proposition 2.1. Let R be a ring. Then IPO(R) is a semigroup.

Proof. Let A,B ∈ IPO(R). Then there exist left or right ideals I1, J1, I2, J2 ofR
such that A = I1J1 and B = I2J2. We show that AB = (I1J1)(I2J2) ∈ IPO(R).

Case 1: J1 is a left ideal. Then AB = I1(J1I2J2) ∈ IPO(R) (as J1I2J2 is a
left ideal of R).

Case 2: J1 is a right ideal and either I2 is a left ideal or J2 is a right ideal.
Then AB = (I1J1)(I2J2) ∈ IPO(R).

Case 3: J1 is a right ideal, I2 is a right ideal, and J2 is a left ideal. Then
AB = (I1J1I2)J2 ∈ IPO(R).

Thus IPO(R) is multiplicatively closed. Since the multiplication is associa-
tive, IPO(R) is a semigroup. �

It was shown in [15, Theorem 1.2] that the zero-divisor graph of a commuta-
tive semigroup S is connected and diam(Γ(S)) ≤ 3 . In the following example
we show that Γ(S) is not necessarily connected when S is a non-commutative
semigroup.

Example 2.2. Let K be a field and V = ⊕∞
i=1K. Then R = HOMK(V, V ),

under the point-wise addition and the multiplication taken to be the com-
position of functions, is an infinite non-commutative ring with identity. Let
π1 : V → V be defined by (a1, a2, . . .) 7→ (a1, 0, . . .) and f : V → V be defined
by (a1, a2, . . .) 7→ (0, a1, a2, . . .). Then π1, f ∈ R. Note that (Rπ1)(fR) = 0,
so Γ(IPO(R)) 6= ∅. However, Γ(IPO(R)) is not connected as there is no path
leading from the vertex (fR) to any other vertex of Γ(IPO(R)). This is because
there exists g : V → V given by (a1, a2, . . .) 7→ (a2, a3, . . .) and g ∈ R such that
gf = 1R. �

For a semigroup S, let

Al(S) = {a ∈ D(S)∗ : there exists b ∈ D(R)∗ such that ba = 0}

and

Ar(S) = {a ∈ D(S)∗ : there exists b ∈ D(R)∗ such that ab = 0}.

Next we show that Γ(S) is connected if and only if Al(S) = Ar(S). Moreover,
if Γ(S) is connected, then diam(Γ(S)) ≤ 3.

Theorem 2.3. Let S be a semigroup. Then Γ(S) is connected if and only if

Al(S) = Ar(S). Moreover, if Γ(S) is connected, then diam(Γ(S)) ≤ 3.

Proof. Suppose that Al(S) = Ar(S). Let a and b be distinct vertices of Γ(S).
Then a 6= 0 and b 6= 0. We show that there is always a path with length at
most 3 from a to b.

Case 1: ab = 0. Then a→ b is a desired path.
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Case 2: ab 6= 0. Then since Al(S) = Ar(S), there exists c ∈ D(S) \ {0} such
that ac = 0 and d ∈ D(S) \ {0} such that db = 0.

Subcase 2.1: c = d. Then a→ c→ b is a desired path.
Subcase 2.2: c 6= d. If cd = 0, then a → c → d → b is a desired path. If

cd 6= 0, then a→ cd→ b is a desired path.
Thus Γ(S) is connected and diam(Γ(S)) ≤ 3.
Conversely, if Γ(S) is connected, then it is easy to show that Al(S) = Ar(S).

�

Now, we define a directed graph which extends the annihilating-ideal graph
to an arbitrary ring. We associate to a ring R a directed graph (denoted by
APOG(R)) the zero-divisor graph of IPO(R), i.e., APOG(R) = Γ(IPO(R)).

Corollary 2.4. Let R be a ring. Then APOG(R) is connected if and only

if Al(IPO(R)) = Ar(IPO(R)). Moreover, if APOG(R) is connected, then

diam(APOG(R)) ≤ 3.

Proof. Since APOG(R) is equal to Γ(IPO(R)), it follows from Theorem 2.3
that APOG(R) is a connected if and only if Al(IPO(R)) = Ar(IPO(R)). Also,
if APOG(R) is connected, then diam(APOG(R)) ≤ 3. �

Recall that a Duo ring is a ring in which every one-sided ideal is a two-sided
ideal.

Proposition 2.5. Let R be an Artinian Duo ring. Then

Al(IPO(R)) = Ar(IPO(R)) = IPO(R) \ {0, R}.

Moreover, APOG(R) is connected and diam(APOG(R)) ≤ 3.

Proof. Let R be a Duo ring. Then by [17, Lemma 4.2], R = (R1,m1) ×
(R2,m2)×· · ·×(Rn,mn), where eachRi(1 ≤ i ≤ n) is an Artinian local ring with
unique maximal ideal mi. Let A ∈ IPO(R)\{0, R}. Then A = (I1×I2×· · ·×In)
(J1 × J2 × · · · × Jn), where every Ii(1 ≤ i ≤ n) is an one-sided ideal, so is ev-
ery Jj(1 ≤ j ≤ n). Since A 6= R, there exists Ii (or Jj) such that Ii 6= R
(or Jj 6= R). Without loss of generality we may assume that Ii 6= R. So
A = (I1 × I2 × · · · × In) (J1 × J2 × · · · × Jn) ⊆ (R1 × · · · × Ii × · · · × Rn)
(R1× · · · ×Ri× · · · ×Rn). Suppose k is the smallest positive integer such that

Ii
k = 0. Thus (0×· · ·×Ik−1

i ×· · ·×0)((R1×· · ·×Ii×· · ·×Rn)(R1×· · ·×Ri×
· · · ×Rn)) = 0 and ((R1 × · · · × Ii × · · · ×Rn)(R1 × · · · ×Ri × · · · ×Rn))(0 ×
· · · × Ik−1

i × · · · × 0) = 0. Therefore A ∈ Al(IPO(R)) and A ∈ Ar(IPO(R)).
Thus IPO(R) \ {0, R} ⊆ Ar(IPO(R)) and IPO(R) \ {0, R} ⊆ Al(IPO(R)). We
conclude that Ar(IPO(R)) = IPO(R) \ {0, R} = Al(IPO(R)).

The second part follows from Theorem 2.3. �

It is well known that if |D(R)| ≥ 2 is finite, then |R| is finite. Let A,B be
vertices of APOG(R). We use A ⇋ B if A → B or A ← B. For any vertices
C and D of APOG(R), let ad(C) = {A is a vertex of APOG(R) : C = A
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or C ⇋ A or there exists a vertex B of APOG(R) such that C ⇋ B ⇋ A}
and adu(D) =

⋃

C⊆D ad(C). We know that ad(C) ⊆ D(R). The following
proposition shows that if a principal left or right ideal I of R is a vertex of
APOG(R) and all left and right ideals of ad(I) have finite cardinality, then R
has finite cardinality.

Proposition 2.6. Let R be a ring and I be a principal left or right ideal of R
such that I is a vertex of APOG(R). If all left and right ideals of ad(I) have

finite cardinality, then R has finite cardinality.

Proof. Without loss of generality, we may assume that I is a left principal ideal.
Thus I = Rx for some non-zero x ∈ R. If Annl(x) = 0, then |R| = |I| < ∞.
So we may always assume that Annl(x) 6= 0.

Case 1: I = Annr(x) and Annr(x)Annl(x) = 0. Then

I → Annl(x)

and so Annl(x) ∈ ad(I). Therefore, Annl(x) is finite. Since I ∼= R/Annl(x),
|R| = |I||Annl(x)| <∞.

Case 2: I 6= Annr(x) and Annr(x)Annl(x) = 0. If Annr(x) 6= 0, then

I → Annr(x)→ Annl(x)

and so Annl(x) ∈ ad(I). Therefore, Annl(x) is finite. Since I ∼= R/Annl(x),
|R| = |I||Annl(x)| < ∞. If Annr(x) = 0, then since Rx is a vertex of
APOG(R), there exists a (nonzero right ideal) J such that JRx = 0 (replace J
by JR if necessary). Since Annr(x) = 0, we have xJ is a nonzero right ideal
and so

Annl(x)→ xJ → I.

Thus Annl(x) ∈ ad(I), so Annl(x) is finite. Again, we have |R| = |I||Annl(x)|
<∞.

Case 3: I 6= Annr(x) and Annr(x)Annl(x) 6= 0. Then

Annr(x)← I → Annr(x)Annl(x)→ (xR)

and so (xR), Annr(x) ∈ ad(I). Therefore, (xR) and Annr(x) are finite. Since
(xR) ∼= R/Annr(x), |R| = |(xR)||Annr(x)| < ∞. This completes the proof.

�

Here is our main result in this section.

Theorem 2.7. Let R be a ring such that APOG(R) 6= ∅. Then R is Artinian

(resp., Noetherian) if and only if for a left or right ideal I in the vertex set of

APOG(R), adu(I) has DCC (resp., ACC) on both its left and right ideals.

Proof. If R is Artinian, then IPO(R) has DCC on both its left ideals and right
ideals. Thus for every left or right ideal of the vertex set of APOG(R), adu(I)
has DCC on both its left and right ideals as adu(I) ⊆ IPO(R).
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Conversely, without loss of generality let I be a left ideal of vertex set of
APOG(R) such that adu(I) has DCC on its left and right ideals. Assume that
x ∈ I. We have the following cases:

Case 1: xRx 6= {0}, Annl(x) 6= 0, and Annr(x) 6= 0. Then

(xR)← Annl(x)← xRx→ Annr(x)← (Rx).

Therefore (xR), Annr(x), Annl(x), (Rx) ∈ ad(xRx). Since ad(xRx) ⊆ adu(I)
and adu(I) has DCC on its left and right ideals, we conclude that (Rx) and
Annl(x) are left Artinian R-modules, and (xR) and Annr(x) are right Artinian
R-modules. Since (Rx) ∼= R/Annl(x) and (xR) ∼= R/Annr(x), by [18, (1.20)]
we conclude that R is Artinian.

Case 2: xRx = {0}, Annl(x) 6= 0, and Annr(x) 6= 0. Then

Annl(x)→ (xR)→ (Rx)→ Annr(x).

Since ad(Rx) ⊆ adu(I) and adu(I) has DCC on its left and right ideals, we
conclude that (Rx) and Annl(x) are left Artinian R-modules, and (xR) and
Annr(x) are right Artinian R-modules. Since (Rx) ∼= R/Annl(x) and (xR) ∼=
R/Annr(x), by [18, (1.20)] we conclude that R is Artinian.

Case 3: Annl(x) = {0}. Then Rx ∼= R. Therefore, R is a left Artinian
module. Since Rx is a vertex of APOG(R), we have Annr(x) 6= {0}. So there
exists y ∈ D(R) \ {0} such that xy = 0.

Subcase 3.1: yRy 6= {0}. If Annr(y) = {0}, then since

Rx→ yR,

we have yR ∈ adu(I), so yR is a Artinian right R-module. Note that yR ∼= R.
Therefore, R is a right Artinian module. If Annr(y) 6= {0}, then

Annr(y)← yRy ← yRx→ yR.

Therefore (yR), Annr(y) ∈ ad(yRx) ⊆ adu(I). Since adu(I) has DCC on its
right ideals, we conclude that (yR) and Annr(y) are right Artinian R-modules.
Note that (yR) ∼= R/Annr(y), by [18, (1.20)] we conclude that R is a right
Artinian module.

Subcase 3.2: yRy = {0}. Then

yR← yRx← Ry → Annr(y).

Since (yR), Annr(y) ∈ ad(yRx) ⊆ adu(I), we conclude that (yR) and Annr(y)
are right Artinian R-modules. Note that (yR) ∼= R/Annr(y), by [18, (1.20)]
we conclude that R is a right Artinian module.

Case 4: Annr(x) = {0}. Then xRx 6= {0} and since Rx is a vertex of
APOG(R), we have Annl(x) 6= {0}. Therefore,

(xR)← Annl(x)→ xRx.

We conclude that xR,Annl(x) ∈ ad(xRx) ⊆ adu(I). Since xR,Rx,Annl(x) ∈
adu(I), we have Rx and Annl(x) are left Artinian modules and xR is a right
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Artinian module. Note that (Rx) ∼= R/Annl(x) and (xR) ∼= R/Annr(x).
Again by [18, (1.20)] we conclude that R is Artinian. �

Corollary 2.8. Let R be a ring such that APOG(R) 6= ∅. Then R is Artinian

(resp., Noetherian) if and only if APOG(R) has DCC (resp., ACC) on left and

right ideals of its vertex set.

Proof. Since vertex set of APOG(R) is a subset of IPO(R), As in the proof of
Theorem 2.7, if R is Artinian (resp., Noetherian), then APOG(R) has DCC
(resp., ACC) on left and right ideals of its vertex set.

Conversely, since for a left or right ideal I of the vertex set of APOG(R),
adu(I) is a subset of the vertex set of APOG(R), it follows from Theorem 2.7
that R is Artinian. �

A directed graph Γ is called a tournament if for every two distinct vertices
x and y of Γ exactly one of xy and yx is an edge of Γ. In other words, a
tournament is a complete graph with exactly one direction assigned to each
edge.

Proposition 2.9. Let R be a ring such that A2 6= {0} for every non-zero

A ∈ IPO(R) and Al(IPO(R)) ∩ Ar(IPO(R)) 6= ∅. Then APOG(R) is not a

tournament.

Proof. Assume APOG(R) is a tournament. Since Al(IPO(R))∩Ar(IPO(R)) 6=
∅, there exists B ∈ Al(IPO(R)) ∩ Ar(IPO(R)), that is, there exist distinct
non-zero A,C ∈ IPO(R) such that A → B → C is a path in APOG(R). If
CA 6= {0}, then B(CA) = (BC)A = {0} and (CA)B = C(AB) = {0}, which
is a contradiction. So CA = {0} and therefore AC 6= {0} since APOG(R) is
a tournament. Also, AC 6= A (otherwise A2 = (ACAC) = A(CA)C = {0})
and similarly, AC 6= C. Let a, a1 ∈ A and c, c1 ∈ C. Then we have B → C →
((a − a1c)R) and (R(c − ac1)) → A → B. As the above ((a − a1c)R)B = {0}
and B(R(c − ac1)) = {0}. Let b ∈ B be an arbitrary element. Then −acb =
a1b − acb ∈ ((a − a1c)R)B = {0} and bac = bc1 − bac ∈ B(R(c− ac1)) = {0}.
Therefore, ACB = {0} and BAC = {0}. Thus both AC → B and B → AC
are edges of APOG(R). This is a contradiction, hence, APOG(R) cannot be a
tournament. �

3. Undirected annihilating-ideal graph of a ring

Let S be a semigroup with 0 and recall that D(S) denotes the set of one-
sided zero-divisors of S. We associate to S an undirected graph Γ(S) with
vertices set D(S)∗ = D(S) \ {0} and two distinct vertices a and b are adja-
cent if ab = 0 or ba = 0. Similarly, we associate to a ring R an undirected
graph (denoted by APOG(R)) the undirected zero-divisor graph of IPO(R),
i.e., APOG(R) = Γ(IPO(R)). The only difference between APOG(R) and
APOG(R) is that the former is a directed graph and the latter is undirected
(that is, these graphs share the same vertices and the same edges if directions
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on the edges are ignored). If R is a commutative ring, this definition agrees
with the previous definition of the annihilating-ideal graph. In this section we
study the properties of Γ(S). We first show that Γ(S) is always connected with
diameter at most 3.

Theorem 3.1. Let S be a semigroup. Then Γ(S) is a connected graph and

diam(Γ(S)) ≤ 3.

Proof. Let a and b be distinct vertices of Γ(S). If ab = 0 or ba = 0, then a− b
is a path. Next assume that ab 6= 0 and ba 6= 0.

Case 1: a2 = 0 and b2 = 0. Then a− ab− b is a path.
Case 2: a2 = 0 and b2 6= 0. Then there is a some c ∈ D(S) \ {a, b, 0} such

that either cb = 0 or bc = 0. If either ac = 0 or ca = 0, then a− c− b is a path.
If ac 6= 0 and ca 6= 0, then a− ca− b is a path if bc = 0 and a− ac− b is a path
if cb = 0.

Case 3: a2 6= 0 and b2 = 0. We can use an argument similar to that of the
above case to obtain a path.

Case 4: a2 6= 0 and b2 6= 0. Then there exist c, d ∈ D(S) \ {a, b, 0} such that
either ca = 0 or ac = 0 and either db = 0 or bd = 0. If bc = 0 or cb = 0, then
a − c − b is a path. Similarly, if ad = 0 or da = 0, a − d − b is a path. So we
may assume that c 6= d. If cd = 0 or dc = 0, then a− c− d− b is a path. Thus
we may further assume that cd 6= 0, dc 6= 0, bc 6= 0, cb 6= 0, ad 6= 0 and da 6= 0.
We divide the proof into 4 subcases.

Subcase 4.1: ac = 0 and db = 0. Then a− cd− b is a path.
Subcase 4.2: ac = 0 and bd = 0. Then a− cb− d− b is a path.
Subcase 4.3: ca = 0 and bd = 0. Then a− dc− b is a path.
Subcase 4.4: ca = 0 and db = 0. a− bc− d− b is a path.
Thus Γ(S)) is connected and diam(Γ(S)) ≤ 3. �

In [10], Anderson and Livingston proved that if Γ(R) (the zero-divisor graph
of a commutative ring R) contains a cycle, then gr(Γ(R)) ≤ 7. They also proved
that gr(Γ(R)) ≤ 4 when R is Artinian and conjectured that this is the case for
all commutative rings R. Their conjecture was proved independently by Mulay
[19] and DeMeyer and Schneider [16]. Also, in [20], Redmond proved that if
Γ(R) (the undirected zero-divisor graph of a non-commutative ring) contains a
cycle, then gr(Γ(R)) ≤ 4. The following is our first main result in this section
which shows that for a (not necessarily commutative) semigroup S, if Γ(S)
contains a cycle, then gr(Γ(S)) ≤ 4.

Theorem 3.2. Let S be a semigroup. If Γ(S) contains a cycle, then gr(Γ(S)) ≤
4.

Proof. Let a1− a2− · · · − an−1− an− a1 be a cycle of shortest length in Γ(S).
Assume that gr(Γ(S)) > 4, i.e., assume n ≥ 5. Note that a2an−1 6= 0 and
an−1a2 6= 0 (as n ≥ 5). If a2an−1 6∈ {a1, an}, then a1 − a2an−1 − an − a1 is
a cycle of length 3, yielding a contradiction. Also, if an−1a2 6∈ {a1, an}, then
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a1 − an−1a2 − an − a1 is a cycle of length 3, yielding a contradiction. We have
the following cases:

Case 1 : a2an−1 = a1 and an−1a2 = an. If a2a3 = 0, then ana3 =
(an−1a2)a3 = 0. Therefore, a1 − a2 − a3 − an − a1 is a cycle of length 4,
yielding a contradiction. So, a3a2 = 0. Thus, a3a1 = a3(a2an−1) = 0. There-
fore, a1 − a3 − a4 − · · · − an−1 − an − a1 is a cycle of length n− 1, yielding a
contradiction.

Case 2 : a2an−1 = a1 and an−1a2 = a1. If a2a3 = 0, then a1a3 =
(an−1a2)a3 = 0. Therefore, a1−a3−a4−· · ·−an−1−an−a1 is a cycle of length
n − 1, yielding a contradiction. So, a3a2 = 0. Thus, a3a1 = a3(a2an−1) = 0.
Therefore, a1−a3−a4−· · ·−an−1−an−a1 is a cycle of length n− 1, yielding
a contradiction.

Case 3 : a2an−1 = an and an−1a2 = a1. If a2a3 = 0, then a1a3 =
(an−1a2)a3 = 0. Therefore, a1−a3−a4−· · ·−an−1−an−a1 is a cycle of length
n − 1, yielding a contradiction. So, a3a2 = 0. Thus, a3an = a3(a2an−1) = 0.
Therefore, a1−a2−a3−an−a1 is a cycle of length 4, yielding a contradiction.

Case 4 : a2an−1 = an and an−1a2 = an. If a2a3 = 0, then ana3 =
(an−1a2)a3 = 0. If a3a2 = 0, then a3an = a3(a2an−1) = 0. Therefore,
a1 − a2 − a3 − an − a1 is a cycle of length 4, yielding a contradiction.

Since in all cases we have found contradictions, we conclude that if Γ(S)
contains a cycle, then gr(Γ(S)) ≤ 4. �

Corollary 3.3. Let R be a ring. Then APOG(R) is a connected graph and

diam(APOG(R)) ≤ 3. Moreover, If APOG(R) contains a cycle, then

gr(APOG(R)) ≤ 4.

Proof. Note that APOG(R) is equal to Γ(IPO(R)). So by Theorem 3.1,
APOG(R) is a connected graph and diam(APOG(R)) ≤ 3. Also, by Theo-
rem 3.2, if APOG(R) contains a cycle, then gr(APOG(R)) ≤ 4. �

For a not necessarily commutative ring R, we define a simple undirected
graph Γ(R) with vertex set D(R)∗ (the set of all non-zero zero-divisors of R)
in which two distinct vertices x and y are adjacent if and only if either xy = 0
or yx = 0 (see [20]). The Jacobson radical of R, denoted by J(R), is equal
to the intersection of all maximal right ideals of R. It is well-known that
J(R) is also equal to the intersection of all maximal left ideals of R. In our
second main theorem in this section we characterize rings whose undirected
annihilating-ideal graphs are complete graphs.

Theorem 3.4. Let R be a ring. Then APOG(R) is a complete graph if and

only if either (D(R))2 = 0, or R is a direct product of two division rings, or R
is a local ring with maximal ideal m such that IPO(R) = {0,m,m2, R}.

Proof. Assume that APOG(R) is a complete graph. If Γ(R) is a complete
graph, then by [5, Theorem 5], either R ∼= Z2 × Z2 or D(R)2 = {0}. So the
forward direction holds. Next assume that Γ(R) is not a complete graph. So
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there exist different vertices x and y of Γ(R) such that x and y are not adjacent.
We have the following cases:

Case 1: x ∈ Ar(R). Without loss of generality assume that y ∈ Ar(R). If
Rx 6= Ry, then since APOG(R) is a complete graph, we have Rx is adjacent
to Ry in APOG(R), so x and y are adjacent in Γ(R), yielding a contradiction.
Thus Rx = Ry. Since x ∈ Ar(R), there exists non-zero element z ∈ D(R) such
that xz = 0. If Rx ⊆ zR, then (Rx)2 = {0}. So (Rx)(Ry) = {0}, and x and
y are adjacent in Γ(R), yielding a contradiction. Therefore, Rx * zR. If there
exists a left or right ideal I of R expect zR such that I * Rx, then there exists

nonzero element s ∈ I \Rx. Then (Rs+Rx)(zR) = {0}. Since APOG(R) is a
complete graph Rx is adjacent to (Rs+Rx) = {0}. Thus (Rx)2 = {0}, and so
x and y are adjacent in Γ(R), yielding a contradiction. Therefore, {zR,Rx} is
the set of nonzero proper left or right ideals of R. Thus by Corollary 2.8, R is
an Artinian ring. We have the following subcases:

Subcase 1: zR * Rx. Then zR and Rx are maximal ideals. If zR or Rx is not
a two-sided ideal, then zR = J(R) = Rx, yielding a contradiction. Therefore,
Rx and zR are two-sided ideals. Also, Rx and zR are minimal ideals and so
Rx ∩ zR = {0}. Thus by Brauer’s Lemma (see [18, 10.22]), (Rx)2 = 0 or
Rx = Re, where e is a idempotent in R. If (Rx)2 = {0}, then x is adjacent to
y in Γ(R), yielding a contradiction. So Rx = Re, where e is an idempotent in
R. Therefore, R = eRe⊕eR(1−e)⊕(1−e)Re⊕(1−e)R(1−e). Since {zR,Rx}
is the set of nonzero proper left or right ideals of R and Rx ∩ zR = {0}, we
conclude that Re = Rx = eR and (1 − e)R = zR = R(1 − e). Therefore,
(1 − e)Re = (1 − e)eR = {0} and eR(1 − e) = e(1 − e)R = {0}. So R =
eRe ⊕ (1 − e)R(1 − e). Since R is an Artinian ring with two nonzero left or
right ideals, we conclude that eRe and (1 − e)R(1− e) are division rings.

Subcase 2: zR ⊆ Rx. Then Rx = D(R). If (Rx)2 = {0}, then x is adjacent
to y in Γ(R), yielding a contradiction. If D(R)2 6= 0, then D(R)2 = zR. There-
fore, R is a local ring with maximal ideal m such that IPO(R) = {0,m,m2, R}.

In summary, we obtain that either R is a direct product of two division rings,
or R is a local ring with maximal ideal m such that IPO(R) = {0,m,m2, R}.
Thus the forward direction holds.

Case 2: x ∈ Al(R). Similar to Case 1, we conclude that either R is a direct
product of two division rings, or R is a local ring with maximal ideal m such
that IPO(R) = {0,m,m2, R}. So the forward direction holds.

The converse is obvious. �

4. Undirected annihilating-ideal graphs for matrix rings over

commutative rings

In this section we investigate the undirected annihilating-ideal graphs of
matrix rings over commutative rings. By Theorem 3.3, diam(APOG(R)) ≤ 3
for any ring R. In Proposition 4.1 we show that diam(APOG(Mn(R))) ≥ 2
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where n ≥ 2. A natural question is whether or not diam(APOG(Mn(R))) ≥
diam(APOG(R)). We show that the answer to this question is affirmative.

Proposition 4.1. Let R be a commutative ring. Then

diam(APOG(Mn(R))) ≥ 2, where n ≥ 2.

Proof. Let

A = (Mn(R)











1 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











) and B = (











1 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











Mn(R)).

Since

A(











0 0 0 · · · 0
1 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











Mn(R)) = 0 and (Mn(R)











0 0 0 · · · 0
1 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











)B = 0,

we conclude that A and B are vertices in (APOG(Mn(R))). Note that










1 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











2

6= 0 and











1 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











∈ A ∩B,

so AB 6= 0. Therefore, diam(APOG(Mn(R))) ≥ 2. �

Theorem 4.2. Let R be a commutative ring. Then diam(APOG(Mn(R))) ≥
diam(AG(R)) = diam(APOG(R)).

Proof. By [12, Theorem 2.1], diam(AG(R)) ≤ 3.
Case 1: diam(AG(R)) ≤ 2. By Proposition 4.1, diam(APOG(Mn(R))) ≥ 2.

Thus diam(APOG(Mn(R))) ≥ diam(AG(R)).
Case 2: diam(AG(R)) = 3. Then there exist vertices I, J,K, and L of

AG(R) such that I − K − L − J is a shortest path between I and J . So
d(I, J) = 3. Since I and J are vertices of AG(R), Mn(I) and Mn(J) are
vertices of APOG(Mn(R)). Suppose that diam(APOG(Mn(R))) = 2. So we can
assume that there exists α = [aij ] ∈Mn(R) such that Mn(I)α = αMn(J) = 0.
Without loss of generality, we may assume that a11 6= 0. For every a ∈ I,











a 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











A = 0,



1334 F. ALINIAEIFARD, M. BEHBOODI, AND Y. LI

so aa11 = 0. Therefore I(a11R) = 0. For every b ∈ J ,

A











b 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











= 0.

Therefore (a11R)J = 0. Thus I−(a11R)−J is a path of length 2 in AG(R), and
so d(I, J) ≤ 2, yielding a contradiction. Therefore, diam(APOG(Mn(R))) = 3
and we are done. �

It was shown in Corollary 3.3 that gr(APOG(R)) ≤ 4. We now show that
gr(APOG(Mn(R))) = 3 where n ≥ 2.

Proposition 4.3. Let R be a commutative ring. Then gr(APOG(Mn(R))) = 3
where n ≥ 2.

Proof. Let

A =











1 1 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











, B =











1 −1 0 · · · 0
−1 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











,

and

C =











0 1 0 · · · 0
0 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0











.

Then (AMn(R)A)− (BMn(R)B) − (CMn(R)C) is a cycle in APOG(Mn(R)),
so gr(APOG(Mn(R))) = 3. �
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