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Abstract. In this paper, we study some properties of finite or infinite poset P determined

by properties of the ideal based zero-divisor graph properties GJ(P ), for an ideal J of P .

1. Introduction

Throughout this paper, (P,≤) denotes a poset and the graph G denotes the
ideal based zero-divisor graph of a poset P with respect to ideal I of P. For M ⊆ P,
let L(M) := {x ∈ P : x ≤ m for all m ∈ M} denotes the lower cone of M in P,
and dually let U(M) := {x ∈ P : m ≤ x for all m ∈ M} be the upper cone of M in
P. For A,B ⊆ P we shall write L(A,B) instead of L(A ∪ B) and dually for upper
cones. If M = {x1, ..., xn} is finite, then we use the notation L(x1, ..., xn) instead of
L({x1, ..., xn}) (and dually). By an ideal we mean a non-empty subset I ⊆ P such
that if b ∈ I and a ≤ b, then a ∈ I. A proper order-ideal I of P is called prime if
for any a, b ∈ P, L(a, b) ⊆ I implies a ∈ I or b ∈ I. In [2], Beck introduced the con-
cept of a zero-divisor graph of a commutative ring with identity, but this work was
mostly concerned with coloring of rings. Later D. F. Anderson and Livingston in
[1] studied the subgraph Γ(R) of G(R) whose vertices are the nonzero zero-divisors
of R. In [10], Redmond has generalized the notion of the zero-divisor graph. For a
given ideal I of a commutative ring R, he defined an undirected graph ΓI(R) with
vertices {x ∈ R\I : xy ∈ I for some y ∈ R\I}, where distinct vertices x and y are
adjacent if and only if xy ∈ I. The zero-divisor graph of various algebraic structures
has been studied by several authors [[4],[5],[7] and[11]].

In [8], Radomr Halas and Marek Jukl have introduced the concept of a graph
structure of a posets, let (P, ≤) be a poset with 0. Then the zero-divisor graph of P,
denoted by Γ(P ), is an undirected graph whose vertices are just the elements of P
with two distinct vertices x and y are joined by an edge if and only if L(x, y) = {0},
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and proved some interesting results related with clique and chromatic number of
this graph structure. In [6], we generalized the notion of zero-divisor graph of P. Let
P be a poset and J be an ideal of P. Then the graph of P with respect to the ideal
J, denoted by GJ(P ), is the graph whose vertices are the set {x ∈ P\J : L(x, y) ⊆
J for some y ∈ P\J} with distinct vertices x and y are adjacent if and only if
L(x, y) ⊆ J. If J = {0}, then GJ (P ) = G(P ), and J is a prime ideal of P if and only
if GJ (P ) = φ. And investigated the interplay between the poset properties of P and
the graph-theoretics properties of GJ(P ). Following [9], let I be an ideal of P. Then
the extension of I by x ∈ P is meant the set < x, I >= {a ∈ P : L(a, x) ⊆ I}. For
any s ∈ V (G), N(s) denotes the set of all vertices adjacent to s and K(G) denotes
the core of G. In this paper the notations of graph theory are from [3], the notations
of posets from [8].

2. Poset Properties Related to a Single Vertex

Theorem 2.1. Let G be the graph of a poset P. If there exist s, t ∈ V (G) such
that N(s) 6= φ, N(t) 6= φ, then L(x, y) ⊆ (N(s)∩N(t))∪ I for x ∈ N(s), y ∈ N(t).
In addition, if x is an end vertex, then I ∪ {s} is an ideal of P.

Proof. Let t1 ∈ L(x, y)\I for x ∈ N(s) and y ∈ N(t). Then L(x, s) ⊆ I and
L(y, t) ⊆ I. If t1 ∈ {x, y}, then it is easy to see that t1 ∈ N(s)∩N(t). If t1 = s, then
s ∈ L(x, s) ⊆ I, a contradiction. So t1 6= s. Similar way, we can get t1 6= t. Now,
L(t1, s) ⊆ L(x, s) ⊆ I and L(t1, t) ⊆ L(y, t) ⊆ I which imply t1 ∈ N(s) ∩ N(t). If
x ∈ N(s) is an end vertex of G, then < x, I >= I ∪ {s} is an ideal of P . 2

Corollary 2.2. Let G be a graph of a poset P and y − s − t − x be a path in G.
Then

(i) K(G) is non - empty and it contains atleast |L(x, y)\I| triangles.
(ii) If x and y are end vertices, then P has at least two ideals of the form I∪{s}.

Theorem 2.3. Let P be a poset with corresponding graph G such that P =
V (G) ∪ {I}. For an element x ∈ P\I, assume that V (G) = Cx ∪ {x} ∪ T (x) is a
disjoint union of three subsets satisfying the following conditions:

(i) T (x) contains all end vertices adjacent to x.
(ii) There is no edge linking a vertex in T (x) with a vertex in Cx, whenever

T (x) 6= φ and Cx 6= φ.
(iii) Either Cx 6= φ or |V (G)| ≥ 3 and x is adjacent to at least one end vertex.

Then L(a, b) ⊆ Cx ∪ {x} ∪ I for all a, b ∈ Cx ∪ {x} ∪ I.

Proof. Let us assume that T (x) 6= φ and let a, b ∈ Cx ∪ {x} ∪ I. If Cx = φ, by
assumption (iii), there exists an end vertex y adjacent with x which gives I ∪ {x}
is an ideal of P. So L(a, b) ⊆ I ∪ {x}. If Cx 6= φ, then there is at least one element
z ∈ Cx such that z − x. Suppose L(x)∩T (x) 6= φ. Then there exists y ∈ L(x)∩T (x)
with such that L(z, y) ⊆ I, contradicting condition (ii). So L(x) ∩ T (x) = φ, i.e.,
L(x) ⊆ Cx ∪ {x} ∪ I. It remains to consider the case a, b ∈ Cx\{x} ∪ I. Assume to
the contrary that there is an element t ∈ L(a, b) such that t /∈ Cx ∪ {x} ∪ I. If a
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is not adjacent to x, then there exists c ∈ Cx such that L(a, c) ⊆ I which implies
there is an edge c − t, where c ∈ Cx, t ∈ T (x), contradicting condition (ii). If a is
adjacent to x, then by condition (i), a is not an end vertex, then by condition (ii),
there is an element c( 6= a) ∈ Cx such that a − c. In this case also we have an edge
c − t, contradicting condition (ii). So L(a, b) ⊆ Cx ∪ {x} ∪ I. 2

For any vertex x ∈ V (G), Tx denotes the set of all end vertices adjacent to x in
G.

Corollary 2.4. Let P be a poset with corresponding graph G such that V (G) =
P\I. If G is not a star graph, then for any x ∈ V (G), we have L(a, b) ⊆ P\Tx for
all a, b ∈ P\Tx.

Proof. In Theorem 2.3, let T (x) = Tx. If G is not a star graph, then Cx 6= φ and
P\T (x) = Cx ∪ {x} ∪ I. The result then follows from Theorem 2.3. 2

Theorem 2.5. Let G be the graph of a poset P and assume that G has a cycle.
For any vertex x in G that is not an end vertex. If any two vertices in L(u) are
comparable ((i.e) a ≤ b, for a, b ∈ L(u)), then L(u, v) ⊆ Tx ∪ I for all u, v ∈ Tx ∪ I.

Proof. Suppose L(u, v) * I for some u, v ∈ Tx. Then there exists c ∈ L(u, v)\I such
that c 6= x. If c is not an end vertex of G, by Theorem 3.4 of [6], it is in the core of
G. Then there exists a vertex d in the core such that d /∈ {x, c} and x − c − d.
Since L(d, u) * I, there exists e ∈ L(d, u)\I such that e ∈ I or c ∈ I as L(e, c) ⊆ I,
a contradiction. So c is an end vertex of G. 2

Note that if we consider x = {a} and u = {b, c} in Example 2.8, then {b} and
{c} are not comparable, but L({b, c}) * Tx ∪ I. Therefore, Theorem 2.5 is not valid
in general. Hence, the condition comparable on the set L(u) is not superficial in
Theorem 2.5.

Theorem 2.6. Let G be a graph of a poset P. If G does not contain an infinite
clique, then P satisfies the a.c.c on < x, I > for x ∈ P.

Proof. Suppose that < x1, I >⊆< x2, I >⊆ ... < xi, I >⊆ ... be an increasing
chain of ideals, for xi ∈ P. If some xi ∈ I, then the proof is trivial. So assume
that xi ∈ P\I for all i. For each i ≥ 2, let ai ∈< xi, I > \ < xi−1, I > . Then
L(xn−1, an) * I for n = 2, 3, .... So there exists yn ∈ L(xn−1, an)\I such that
L(yi, yj) ⊆ I for any i 6= j. i.e., we have an infinite clique in G, a contradiction. So
P satisfies the a.c.c on < x, I > for x ∈ P. 2

Example 2.7. Let G be a graph of a poset P. For any x, y ∈ V (G) with U(x, y) ∩
V (G) 6= φ, then the edge x− y is contained in a triangle.

Proof. Let x, y ∈ V (G) with x − y and U(x, y) ∩ V (G) 6= φ. Then there exists
t ∈ U(x, y)∩V (G) such that t /∈ {x, y}. Since diam(G) ≤ 3, we have either x−a− t
or x− a− b− t for some a, b ∈ V (G). If x− a− t, then x− a− y−x. If x−a− b− t,
then x− b− t which implies x− b− y − x. 2

We now show by an example that the Theorem 2.7 will fail if U(x, y)∩V (G) = φ
for any edge x− y in G.
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Theorem 2.8. Let P (X) be the power set of a set X = {a, b, c}. Then P (X) is a
poset under the set inclusion ⊆ . If I = {φ}, then the graph G is:

Here U({a, b}, {c}) ∩ V (G) = φ but the edge {a, b} − {c} is not contained in a
triangle.

The distance d(v) of a vertex v in a connected finite graph G is the sum of the
distances v to each vertex of G. The median M(G) of a graph G is the subgraph
induced by the set of vertices having minimum distance. Let G be a connected
graph, and T ⊆ V (G). We say T is a cut vertex set if G\T is disconnected. Also
the cut vertex set T is called a minimal cut vertex set for G if no proper subset of
T is a cut vertex set. In addition, if T = {x}, then x is called a cut vertex. 2

Theorem 2.9. Let G be a graph of a poset P. Then V (M(G))∪ I is an ideal of P.
In addition, if T is a minimal cut vertex set of G, then T ∪ I is an ideal of P.

Proof. Let x ∈ V (M(G))\I and y ∈ P with y ≤ x. Suppose y /∈ I. Then y ∈ V (G)
and d(y, z) ≤ d(x, z) for any z ∈ V (G) which implies d(y) =

∑
z∈V (G) d(y, z) ≤∑

z∈V (G) d(x, z) = d(x). Since x ∈ V (M(G)), we have d(y) = d(x), and hence
y ∈ V (M(G)). Let T be a minimal cut vertex set of G and x ∈ T, p ∈ P such that
p ≤ x. Then there exist two vertices z, y of the graph G such that y − x − z is a
path in G and y, z belong to two distinct connected components of G\T as T\{x}
is not a cut vertex. Suppose p /∈ T ∪ I. Then there exists a path y − p− z in G\T,
a contradiction. 2

Corollary 2.10. Let G be a graph of a poset P. If x is cut-vertex of G, then I∪{x}
is an ideal of P. For y ∈ G\{x}, x is adjacent to y or x ≤ y.

Corollary 2.11. Let G be a graph of G, and let x − y be a bridge e of G such
that G1 and G2 are the two connected components of G\{e}. Then the following
conclusions hold:

(i) If G1 and G2 have at least two vertices, then I ∪ {x} and I ∪ {y} are ideals
of P. Also, if G1 or G2 has only one vertex, then I ∪{x} or I ∪{y} is an ideal of P.

(ii) If G1 and G2 have exactly one vertex, then I ∪ {x} and I ∪ {y} are ideals of
P , and hence I ∪ {x, y} is an ideal of P.

Proof. It follows from Corollary 2.10 and Theorem 2.1. 2

The center C(G) of a connected finite graph G is the subgraph induced by the
vertices of G with eccentricity equal the radius of G.
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Theorem 2.12. Let G be a graph of a poset P. For a finite poset, V (C(G)) ∪ I is
an ideal of P.

Proof. Let x ∈ V (C(G)) ∪ I and p ∈ P such that p ≤ x. Suppose p /∈ I. Then p ∈
V (G) and e(p) = max{d(u, p) : u ∈ V (G)} ≤ max{d(u, x) : u ∈ V (G)} = e(x).
Since x ∈ V (C(G)), we have e(p) = e(x), hence p ∈ V (C(G)). 2
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