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A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR

MODULES

Saeed Safaeeyan, Mohammad Baziar, and Ehsan Momtahan

Abstract. Let R be a commutative ring with identity and M an R-
module. In this paper, we associate a graph to M , say Γ(M), such that
when M = R, Γ(M) is exactly the classic zero-divisor graph. Many well-
known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F.
Anderson and S. B. Mulay, in [6], have been generalized for Γ(M) in the
present article. We show that Γ(M) is connected with diam(Γ(M)) ≤ 3.
We also show that for a reduced module M with Z(M)∗ 6= M \ {0},
gr(Γ(M)) = ∞ if and only if Γ(M) is a star graph. Furthermore, we

show that for a finitely generated semisimple R-module M such that its
homogeneous components are simple, x, y ∈ M \ {0} are adjacent if and
only if xR

⋂
yR = (0). Among other things, it is also observed that

Γ(M) = ∅ if and only if M is uniform, ann(M) is a radical ideal, and
Z(M)∗ 6= M \ {0}, if and only if ann(M) is prime and Z(M)∗ 6= M \ {0}.

1. Introduction

All rings in this paper are commutative with identity and all modules are
unitary right modules. Let G be an undirected graph. We say that G is
connected if there is a path between any two distinct vertices. For distinct
vertices x and y in G, the distance between x and y, denoted by d(x, y), is the
length of a shortest path connecting x and y (d(x, x) = 0 and d(x, y) = ∞ if
no such path exists). The diameter of G is

diam(G) = sup{d(x, y) | x and y are vertices of G}.

A cycle of length n in G is a path of the form x1−x2−x3−· · ·−xn−x1, where
xi 6= xj when i 6= j. We define the girth of G, denoted by gr(G), as the length
of a shortest cycle in G, provided G contains a cycle; otherwise, gr(G) = ∞. A
graph is complete if any two distinct vertices are adjacent. A complete graph
with n vertices is denoted byKn. By a complete subgraph, we mean a subgraph
which is complete as a graph. A complete subgraph of G is called a clique. The
clique number of G is cl(G) = sup{|G′| : G′ is a complete subgraph of G}. Let
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Km,n denote the complete bipartite graph on two nonempty disjoint sets V1 and
V2 with |V1| = m and |V2| = n (herem and nmay be infinite cardinal numbers).
A K1,n graph is often called a star graph. In this article, all subgraphs are
induced subgraphs, where a subgraph G′ of a graph G is an induced subgraph

of G if two vertices of G′ are adjacent in G′ if and only if they are adjacent in
G. The reader is referred to [7], [19], and [20] for undefined terms and concepts.

In recent decades, the zero-divisor graphs of commutative rings (in this pa-
per, called the classic zero-divisor graph) have been extensively studied by many
authors and have become a major field of research, see for example [3-15]. Some
authors have also extended the graph of zero-divisors to non-commutative rings,
see [18] and [2]. In [1], [12], and [13], the graph of zero-divisors for commutative
rings has been generalized to the annihilating-ideal graph of commutative rings
(two ideals I and J are adjacent if IJ = (0)). In [11], the classic zero-divisor
graph has been generalized to modules over commutative rings. According to
[11], m,n ∈ M are adjacent if and only if (mR :R M)(nR :R M)M = 0, which
is a direct generalization of the classic zero-divisor graph. In [8] and [9], the
authors have associated two different graphs to an R-module M with respect
to its first dual, M∗ = Hom(M,R). Though they are not necessarily gener-
alizations of the classic zero-divisor graph, there are some deep interrelations
between these two graphs and the classic one. In this article, we introduce a
new generalization of the classic zero-divisor graph, which is, at least to the
present authors, more natural than the aforementioned generalizations. As
any suitable generalization, this one reveals some properties which are sofar
untouched in the literature, even for the classic zero-divisor graph (see Propo-
sition 1.7 and Proposition 2.7). In general, proofs of results, are simpler than
those proofs given for the counter part results on the classic zero-divisor graph.

Definition 1.1. Let M be an R-module. For every two non-zero elements
x, y ∈ M , we say that x ∗ y = y ∗ x = 0 provided that

x(yR : M) = 0 or y(xR : M) = 0.

For an R-module M , by Z(M) we mean the set of all x ∈ M such that
x ∗ y = 0 for some non-zero y ∈ M . Put Z(M)∗ = Z(M) \ {0}. We associate
an undirected graph Γ(MR) to M with vertices Z(M)∗ such that for distinct
elements x, y ∈ Z(M)∗, the vertices x and y are adjacent provided that x∗y = 0.

As we observe in the sequel, the graph Γ(M) is exactly a generalization of
the classic zero-divisor graph. Assume that R is a ring. Then Γ(RR) = Γ(R).
It is easy to see that for each x ∈ R, (xR : R) = xR. Then for all non-zero
x, y ∈ R, xy = 0 if and only if x ∗ y = 0. Along this line, we also have the
following proposition.

Proposition 1.2. For every positive integer number n, Γ(Zn) = Γ((Zn)Z).

Proof. We can show that for each x̄ ∈ Zn, (x̄Zn : Zn) = dZ, where d = (n, x).
Assume that ȳ(x̄Z : Z) = 0̄. There exist p, q ∈ Z such that n = dq and
x = dp. Since ȳdZ = 0̄, then n divides yd, and hence yd = na for some a ∈ Z.
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Therefore nap = ydp = yx, and hence n|xy (i.e., ȳx̄ = 0̄). Now suppose that
ȳx̄ = 0̄ and d = (n, x). There exist p, q ∈ Z such that n = dq and x = dp.
Since n|xy, then yx = na for some a ∈ Z. Thus na = yx = ydp, and hence
yp = n

d
a. Since (p, n

d
) = 1 and p|n

d
a, then p|a, and hence a = ps for some

s ∈ Z. Therefore ydp = na = nps, and hence yd = ns. Thus n|yd; this means
that ȳ(x̄Z : Zn) = ȳdZ = {0̄}. �

The next lemma has a crucial role in this paper.

Lemma 1.3. Let M be an R-module and m, n two non-zero elements of M .

(1) If m and n are adjacent, then mr ∗ ns = 0 for every r, s ∈ R such that

mr 6= 0 and ns 6= 0.
(2) If mR ∩ nR = 0, then m and n are adjacent.

Proof. (1) Let m(nR : M) = 0. It is clear that mr(nR : M) = 0 for every
r ∈ R. On the other hand, (nsR : M) ⊆ (nR : M) for every s ∈ R. Hence

mr(nsR : M) ⊆ mr(nR : M) = 0.

(2) Since m(nR : M) ⊆ nR ∩ mR, consequently m(nR : M) = 0, which
implies that m ∗ n = 0. �

Remark 1.4. The above lemma shows that independent families of submodules,
and hence uniform dimension (= Goldie dimension), is a related concept in our
discussion. Let M be a module with uniform dimension α (i.e., U.dim M = α),
where α is an attainable cardinal number (in the sense of Dauns and Fuchs in
[15]). Then by Lemma 1.3, we know that α ≤ cl(Γ(M)) ≤ |Z(M)∗|. However,
this inequality can be strict as we will see in Example 1.12. The converse of
Lemma 1.3(2) is not true as we will observe in Example 1.12, where in Z3⊕Z3

the elements (1, 0) and (2, 0) are adjacent, but (1, 0)Z ∩ (2, 0)Z = Z3 ⊕ 0.

The next result is a generalization of [5, Theorem 2.3].

Theorem 1.5. Let M be an R-module. Then Γ(M) is a connected graph with

diam(Γ(M)) ≤ 3.

Proof. Let m,n ∈ Z∗(M) be distinct vertices. If m ∗ n = 0, then d(m,n) = 1.
Now suppose that m ∗n is non-zero. Since m,n ∈ Z(M)∗, there exist non-zero
elements x, y ∈ M such that m ∗ x = 0 and n ∗ y = 0. If either x ∗ y = 0
or x = y, then m − x − y − n or m − x − n is a path of length less than
or equal 3 between n and m. Suppose that x 6= y and x ∗ y 6= 0. Then
by Lemma 1.3(2), xR ∩ yR 6= 0, and hence there exists a non-zero element
z = xr = ys ∈ M \ {m,n}. If m = xr or n = ys, then by Lemma 1.3(1),
we would have m ∗ n = 0, which is a contradiction. Again by Lemma 1.3(1),
m− z − n is a path of length 2. Therefore diam(Γ(M)) ≤ 3. �

The following theorem is a generalization of [17, Theorem 1.4] (also see [3,
page 27] for a brief history of this result). The aforementioned result has also
appeared in [5] and [16].
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Theorem 1.6. Let M be an R-module. If Γ(M) contains a cycle, then

gr(Γ(M)) ≤ 4.

Proof. Let x1 − x2 − · · · − xn be a cycle in Γ(M). Then one of the following
cases holds.
(Case 1) If x1R ∩ x3R = 0, then x1 ∗ x3 = 0, and hence x1 − x2 − x3 − x1 is
cycle.
(Case2) Assume that x1R ∩ x3R 6= 0. There exists a non-zero element m ∈
x1R ∩ x3R. Then:

(a) If m = x2, then x2 and x4 are adjacent because x4 is adjacent to x3, and
hence by Lemma 1.3(1), it is adjacent to m = x2. Hence x2 − x3 − x4 − x2 is
a cycle of length 3.

(b) If m = x4, the same cycle which appeared in part(a) is obtained here.
(c) If m = x1, then x1 and x4 are adjacent, and hence x1−x2−x3−x4−x1

is a cycle of length 4.
(d) If m = x3, then x3 and xn are adjacent, and hence xn−x1−x2−x3−xn

is a cycle of length 4.
(e) Let m ∈ M \ {x1, x2, x3, x4}. Then m is adjacent to both x4 and x2.

Hence m− x2 − x3 − x4 −m is a cycle of length 4. �

When does Γ(M) contain a cycle? The next result gives a partial answer to
this question. As we see, it happens when Γ(M) contains a path of length 4.
In fact, when Γ(M) has a path of length 4, then gr(Γ(M)) ≤ 4.

Proposition 1.7. Let M be an R-module. If Γ(M) contains a path of length

4, then Γ(M) contains a cycle.

Proof. Let x1 − x2 − x3 − x4 − x5 be a path of length 4. If x2R ∩ x4R = 0,
then x2 ∗ x4 = 0, and hence x2 − x3 − x4 − x2 is cycle. Now assume that
0 6= z ∈ x2R ∩ x4R. Then one of the following cases holds.
(Case 1) If z = x1, then by Lemma 1.3(1), x1 − x2 − x3 − x1 is a cycle.
(Case 2) If z = x2, then by Lemma 1.3(1), x2 − x3 − x4 − x5 − x2 is a cycle.
(Case 3) If z = x3, then by Lemma 1.3(1), x1 − x2 − x3 − x1 is a cycle.
(Case 4) If z = x4, then by Lemma 1.3(1), x3 − x4 − x1 − x2 − x3 is a cycle.
(Case 5) If z = x5, then by Lemma 1.3(1), x3 − x4 − x5 − x3 is a cycle.
(Case 6) If z 6∈ {x1, x2, x3, x4, x5}, then by Lemma 1.3(1), x1− z−x3−x2−x1

is a cycle. �

The following corollary is also a direct consequence of [16, Lemma 1.5 and
Theorem 1.6] or [6, Theorems 2.2-2.5].

Corollary 1.8. Let R be a ring. If Γ(R) contains a path of length 4, then

Γ(R) contains a cycle.

Proof. By Proposition 1.7, the verification is immediate. �

It is well-known that R is a domain if and only if the classic zero-divisor
graph Γ(R) is empty. The following is a natural generalization of this fact.
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Theorem 1.9. Let M be an R-module. Then the following are equivalent.

(1) Γ(M) is the empty graph.

(2) M is a uniform R-module, ann(M) is a radical ideal, and Z(M)∗ 6=
M \ {0}.

(3) ann(M) is a prime ideal and Z(M)∗ 6= M \ {0}.

Proof. (1)⇒(2). Let Γ(M) = ∅. Then by Lemma 1.3(2), for all non-zero
elements m,n ∈ M , mR ∩ nR must be non-zero. This implies that M is a
uniform R-module. Now suppose that a, b ∈ R such that ab ∈ ann(M), but
neither a nor b belongs to ann(M). Therefore there exist m,n ∈ M such that
both ma 6= 0 and nb 6= 0. Hence

ma(nbR : M) = am(nbR : M) ⊆ anbR = nabR = 0.

Therefore ma and nb belong to Z(M)∗. This is a contradiction.
(2)⇒(1). Assume that M is a uniform module with radical annihilator such

that 0 6= m ∈ Z(M)∗. There exists 0 6= n ∈ Z(M)∗ such that m ∗ n = 0. Since
M is uniform, there exists 0 6= x ∈ mR ∩ nR. By Lemma 1.3, x(xR : M) = 0,
and hence (xR : M) ⊆ ann(x). Now, assume that r ∈ (xR : M). Then

Mr2 = (Mr)r ⊆ xRr = xrR = 0.

Therefore r2 ∈ ann(M), and hence r ∈ ann(M) because ann(M) is a radical
ideal. This implies that (xR : M) ⊆ ann(M). Hence for each non-zero element
y ∈ M , y(xR : M) = 0. Thus Z(M)∗ = M \ {0}. This is a contradiction.

(1)⇒(3). As in the proof of (1)⇒(2).
(3)⇒(1). Suppose that m ∈ Z(M)∗. Then there exists n ∈ Z(M)∗ such

that m ∗ n = 0. Therefore (mR : M)(nR : M)M = 0, hence (mR : M)(nR :
M) ⊆ ann(M). Since ann(M) is a prime ideal, either (mR : M) ⊆ ann(M)
or (nR : M) ⊆ ann(M). This implies that Z(M)∗ = M \ {0}. This is a
contradiction. �

Corollary 1.10. Let R be a ring. Then Γ(R) is the empty graph if and only

if R is a domain.

Proof. Since 1 6∈ Z∗(R), by Theorem 1.9, the proof is clear. �

The next corollary is a consequence of Theorem 1.9. In spite of this, we give
an easy and direct proof as well.

Corollary 1.11. Let S be a simple R-module. Then Γ(M) is the empty graph.

Proof. For every non-zero element n ∈ S, we know that nR = S, and hence
(nR : S) = R. Therefore for all non-zero elements m,n ∈ S, we have m(nR :
S) = mR 6= 0. Hence Z(M)∗ = ∅. �

Example 1.12. In Figure 1, we give the zero-divisor graph of some Z-modules.
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Z2 ⊕ Z2 Z6 Z3 ⊕ Z3

Figure 1

2. Complete and bipartite graphs

As we have already observed in the third part of Example 1.12, the zero-
divisor graph of Z3 ⊕Z3 is a complete graph. It is not difficult to see that this
fact holds for M = Zp ⊕ Zp (as a Z-module), where p is any prime number,
with |Z(M)∗| = p2− 1. According to the next result, this is also true for every
module which is a direct sum of two isomorphic simple submodules.

Theorem 2.1. Let S and S′ be two isomorphic simple R-modules and M =
S ⊕ S′. Then Z(M)∗ = M \ {0} and Γ(M) is a complete graph.

Proof. Before proving the theorem, we bring the reader’s attention to this fact:
Let M1 and M2 be two isomorphic modules. Then we have Γ(M1) ∼= Γ(M2).
Using this fact, it is enough to prove our theorem for the case M = S ⊕ S.
For each 0 6= x ∈ S, ((x, 0)R : M) = ann(S). Therefore for each (a, b) ∈ M ,
(a, b)((x, 0)R : M) = 0, and hence (x, 0) is adjacent to each non-zero element
(a, b) ∈ M . This argument holds for (0, x), too. Now, suppose that x and y
are two non-zero elements of S. It is clear that ann(x) = ann(y) = ann(S) is a
maximal ideal of R. Obviously, ((x, y)R : M) contains ann(S). On the other
hand, if 1 ∈ ((x, y)R : M), then (x, 0)1 ∈ (x, y)R, and hence (x, 0) = (x, y)r
for some r ∈ R. Thus yr = 0 implies that r ∈ ann(y) = ann(x), and hence
x = xr = 0, a contradiction. Therefore ((x, y)R : M) = ann(S), and hence
(x, y) is adjacent to each non-zero element of M . �

Proposition 2.2. Let R be a commutative ring. Then R is a field if and only

if Γ(M) is a complete graph for every R-module M .

Proof. (⇒) Let R be a field. If dim(MR) = 1, by Lemma 1.11, Γ(M) = ∅, and
hence Γ(M) is a complete graph. If dim(MR) ≥ 2, then for each 0 6= m ∈ M ,
(mR : M) = 0. Because 0 6= r ∈ (mR : M) implies that Mr ⊆ mR, and hence

M ⊆ mr−1R ⊆ mR.

This is a contradiction. Thus n(mR : M) = 0 for all non-zero elements m,n ∈
M .
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(⇐) Let N0 be a maximal ideal of R. Put M = R
N0

⊕ R. Then for every

x ∈ R \ N0, (x, 0)((0, r)R : R
N0

⊕ R) = 0 for every non-zero r ∈ R. Hence

(0, r)((0, s)R : R
N0

⊕R) = 0 (by completeness) for all distinct non-zero r and s

in R. Then for every 0, 1 6= s ∈ R, we have (0, 1)N0sR = 0 because N0sR ⊆
((0, s)R : R

N0

⊕R); this implies that for every 0, 1 6= s, N0s = 0 and N0(1−s) =

0. This implies that N0 = (0), i.e., R is a field. �

In Lemma 1.3, we have already observed that if xR
⋂
yR = (0), then x

is adjacent to y. In the sequel, we give a partial converse of the aforemen-
tioned observation. The reader is reminded that a homogeneous component of
a semisimple module is the direct sum of all the simple isomorphic submodules.

Theorem 2.3. Let M be a finitely generated semisimple R-module such that

its homogeneous components are simple. Then x, y ∈ M \ {0} are adjacent if

and only if xR ∩ yR = 0.

Proof. LetM =
⊕

i∈I Si, where the Si’s are non-isomorphic simple submodules
of M . Assume that x, y ∈ Z(M)∗ are adjacent. We must show that xR

⋂
yR =

(0). Suppose, to the contrary, xR
⋂
yR 6= (0). Then by hypothesis, there exists

α ∈ I such that Sα ⊆ xR
⋂
yR. Since xR, yR are submodules of M , there exist

subsets A and B of I such that M = xR
⊕

(⊕i∈ASi) and M = yR
⊕

(⊕i∈BSi)
(see [7, Lemma 9.2]). Assume that x(yR : M) = (0). Then

(yR : M) = (yR : yR⊕ (⊕i∈BSi)) = ann(⊕i∈BTi) =
⋂

i∈B

ann(Si)

and xR ∼= ⊕i∈I\ASi. We conclude that

ann(xR) = ann(x) = ann(⊕i∈I\ASi) =
⋂

i∈I\A

ann(Si).

Since x(yR : M) = 0, we have that (yR : M) ⊆ ann(x), and therefore⋂
i∈B ann(Si) ⊆ ann(⊕i∈I\ASi). Since for every i, j ∈ I, ann(Si) and ann(Sj)

are coprime, then
⋂

i∈B

ann(Si) =
∏

i∈B

ann(Si) ⊆
⋂

i∈I\A

ann(Si) ⊆ ann(Sr), (∀r ∈ I \A).

Then for every r ∈ I \ A, there exists jr ∈ B such that ann(Sjr) ⊆ ann(Sr)
and hence ann(Sjr) = ann(Sr). Therefore Sjr

∼= Sr, and hence by hypothesis
Sjr = Sr. Recall that there exists α ∈ I such that Sα ⊆ xR

⋂
yR. Since

Sα ⊆ xR ∼= ⊕i∈I\ASi, there exists i ∈ I \ A such that Sα
∼= Si, and hence

Sα = Si. By the above observation, there exists ji ∈ B such that Sα = Si = Sji .
But this implies that

Sα ⊆ yR
⋂

(⊕i∈BSi) = (0).

A contradiction. By Lemma 1.3, the “only if” part is obvious. �
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The next corollary gives a partial answer to the question “when is Γ(M)
a complete bipartite graph?”. Here we provide the reader with two different
proofs, one uses the above theorem and the other one is direct.

Corollary 2.4. Let M = M1 ⊕ M2, where M1 and M2 are non-isomorphic

simple submodules of M . Then Γ(M) is a complete bipartite graph.

Proof. The first Proof. It is not difficult to observe that M satisfies the above
theorem’s hypothesis. Suppose that x, y ∈ Z(M)∗ are adjacent. By the above
theorem, xR

⋂
yR = (0). We have to show that x ∈ Mi and y ∈ Mj , where

i 6= j and i, j ∈ {1, 2}. It is clear that xR and yR are non-isomorphic simple
submodules of M , and hence xR = Mi and yR = Mj, for i 6= j.

The second Proof. For every x ∈ M1 and y ∈ M2, we have xR∩yR = 0. Hence
by Lemma 1.3(2), x and y are adjacent. We observe that no two elements of
the Mi’s are adjacent; for, if x, y ∈ M1 \ {0} such that x(yR : M) = 0, then
xR(yR : M) = M1(M1 : M) = 0. On the other hand, (M1 : M) = ann(M2),
and hence M1(ann(M2)) = 0, which implies that ann(M2) ⊆ ann(M1). Since
ann(M2) is a maximal ideal of R, then ann(M1) = ann(M2). Therefore

M1
∼=

R

ann(M1)
∼=

R

ann(M2)
∼= M2,

which is a contradiction. In the sequel, we observe that for 0 6= x ∈ M1 and
0 6= y ∈ M2, (x + y) is adjacent to no element of Mi, where i = 1, 2. For each
z ∈ M2, (zR : M) = (M2 : M) = ann(M1). Therefore (x + y)(zR : M) = 0
implies that

0 = (x+ y)(zR : M) = (x+ y)ann(M1) = y(ann(M1)),

and hence ann(M1) ⊆ ann(y) = ann(M2). By maximality of ann(M1), we have
ann(M1) = ann(M2), a contradiction. If z((x + y)R : M) = 0 , then by [7,
Lemma 9.2] one of the following holds
(Case 1) If M = (x + y)R ⊕ M2, then (x + y)R ∼= M

M2

∼= M1. On the other
hand,

(x+ y)R ∼=
R

ann(x + y)
∼=

R

ann(x) ∩ ann(y)
,

which is not a simple R-module because ann(x)∩ann(y) ⊂ ann(x) ( ∵ ann(x)∩
ann(y) = ann(x) implies that ann(x) ⊆ ann(y). The maximality of ann(x) and
ann(y) implies that ann(x) = ann(y), and hence M1

∼= M2, a contradiction).
Hence

ann(x)

ann(x) ∩ ann(y)
�

R

ann(x) ∩ ann(y)
.

This is a contradiction.
(Case 2) If M = (x+ y)R ⊕M1, then similarly to case 1, a contradiction may
be obtained.
(Case 3) M = (x + y)R. Hence ((x + y)R : M) = (M : M) = R. Therefore
z((x+ y)R : M) = 0 implies that z = 0. This is a contradiction.
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Similarly, we get a contradiction if we replace M2 by M1.
Finally, the case (x+y)((x′ +y′)R : M) = 0 implies that x((x′+y′)R : M) = 0
and y((x′ + y′)R : M) = 0 which is impossible. �

Let M =
⊕n

i=1 Mi, where n ≥ 3 and the homogeneous components are
simple. While one expects that, in this case, Γ(M) is a complete n-partite
graph, one sees that by Theorem 2.3 this is not the case. However, Γ(M)
contains an n-partite graph.

In [6, Theorem 2.4], it has been proved that for a reduced commutative ring
R, Γ(R) is nonempty with gr(Γ(R)) = ∞ if and only if Γ(R) = K1,n for some
n ≥ 1. In the sequel, we generalize this result to Γ(M). We need a series of
results before proving our main proposition. Recall that a module M is said
to be reduced if whenever a ∈ R, m ∈ M satisfy a2m = 0, then aRm = 0.

Lemma 2.5. Let M be a reduced R-module with Z(M)∗ 6= M \ {0}. If Γ(M)
is a bipartite graph with parts V1 and V2, then Vi = Vi

⋃
{0} is a submodule of

M for i = 1, 2.

Proof. Let x1, x2 ∈ V1 and r ∈ R. We have to show that x1 + x2 ∈ V1 and
rx1 ∈ V1. If rx1 = 0, then rx1 ∈ V1. Now suppose that rx1 6= 0. By hypothesis,
x1 is adjacent to an element of V2, say y1. If rx1 = y1, then by Lemma 1.3,
y1(y1R : M) = 0. This implies that for every m ∈ M and r ∈ (y1R : M),
mr2 = 0. Since M is a reduced R-module, mr = 0, which implies that m is
adjacent to y1. This is a contradiction. Therefore rx1 6= y1, and by Lemma 1.3,
rx1 is adjacent to y1. Since y1 ∈ V2, we have rx1 ∈ V1. If x1 or x2 is equal to
0, then x1 + x2 ∈ V1. Hence we can suppose that neither x1 nor x2 is zero. As
x1, x2 ∈ V1, there are y1, y2 ∈ V2 such that xi is adjacent to yi for i = 1, 2. By
Lemma 1.3, y1R

⋂
y2R 6= (0). Hence there exists 0 6= w ∈ y1R

⋂
y2R. Since

xi(wR : M) ⊆ xiR
⋂

wR ⊆ V1

⋂
V2 = (0)

for i = 1, 2, (x1 + x2)(wR : M) = (0). Now if x1 + x2 = 0, it belongs to V1,
and if x1 + x2 6= 0, as w ∈ V2, we have x1 + x2 ∈ V1. Similarly, we may prove
that V2 is a submodule of M . �

Lemma 2.6. If m /∈ Z(M)∗, then mR is an essential submodule of M .

Proof. If mR is not essential, there exists a nonzero submodule K of M such
that mR

⋂
K = (0). By Lemma 1.3, m is adjacent to any nonzero element of

K, and hence m ∈ Z(M)∗. This is a contradiction. �

Proposition 2.7. Let M be a reduced R-module with Z(M)∗ 6= M \ {0}. If

Γ(M) is a bipartite graph, then the following hold.

(1) Γ(M) is a complete bipartite graph.

(2) U.dimM = 2.
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Proof. (1) Let Z(M)∗ = V1

⋃
V2, where V1

⋂
V2 = ∅ and no two elements of Vi

are adjacent. By Lemma 2.5, V1 = V1

⋃
{0} and V2 = V2

⋃
{0} are submodules

of M . For every z ∈ V1 and y ∈ V2, we have

zR
⋂

yR ⊆ V1

⋂
V2 = (0).

By Lemma 1.3, z and y are adjacent.
(2) Since Z(V1)

∗ and Z(V2)
∗ are empty, by Lemma 2.6, every submodule of

V1 and also V2 is essential. Hence V1 and V2 are uniform submodules of M .
Now we show that V1

⊕
V2 is essential in M . Suppose that K is a submodule

such that K
⋂
V1

⊕
V2 = (0) and 0 6= y ∈ K. Then for every 0 6= z ∈ V1 and

0 6= w ∈ V2, we have zR
⋂
yR = (0) = zR

⋂
wR. Thus z is adjacent to y and

w, i.e., z ∈ V1

⋂
V2 = (0). This is a contradiction. �

Corollary 2.8. Let M be a reduced R-module with Z(M)∗ 6= M \ {0}. Then

gr(Γ(M)) = ∞ if and only if Γ(M) is a star graph.

Proof. The “only if” part is obvious. Suppose that Γ(M) has no cycles. Then
Γ(M) is a tree, and hence it is a bipartite graph. Now by Proposition 2.7, Γ(M)
is a complete bipartite graph. Suppose that V1 and V2 are the parts of Γ(M).
Since Γ(M) has no cycles, then either |V1| = 1 or |V2| = 1, which implies that
Γ(M) is a star graph. �

In [6, Theorem 2.2], it has been proved that for a reduced commutative ring
R, gr(Γ(R)) = 4 if and only if Γ(R) = Km,n with m,n ≥ 2. Here we state and
prove the analog of this result for Γ(M). We need an auxiliary lemma before
proving our proposition.

In [14], the authors showed that a zero-divisor semigroup graph is bipartite
if and only if it contains no triangles. The following lemma is an analog of this
result.

Lemma 2.9. Let M be an R-module. If Γ(M) contains a cycle of odd length,

then Γ(M) contains a triangle.

Proof. Using induction, we show that for every cycle of odd length 2n + 1 ≥
5, there exists a cycle with length 2k + 1 such that k < n. Assume that
x1−x2−· · ·−x2n−x2n+1−x1 is a cycle with odd length 2n+1. If two distinct
non-consecutive xi and xj are adjacent, the proof is complete. Otherwise, there
exists 0 6= z ∈ x1R

⋂
x3R = (0). By Lemma 1.3, z 6= xi for all 1 ≤ i ≤ 2n+ 1.

Here again z is adjacent to both x4 and x2n+1; so we have the cycle

x2n+1 − z − x4 − x5 − · · · − x2n+1,

which is the desired cycle. �

Proposition 2.10. Let M be an R-module. If gr(Γ(M)) = 4, then Γ(M) is a

bipartite graph with parts V1 and V2 such that |V1|, |V2| ≥ 2. The converse is

true if M is a reduced module with Z(M)∗ 6= M \ {0}.
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Figure 2

Proof. Let gr(Γ(M)) = 4. By the above lemma, we observe that the length of
any cycle in Γ(M) is even. Since Γ(M) has a cycle of length 4, the verification
is immediate. The converse follows from Proposition 2.7. �

3. Further notes

In this short section, we are going to explain the relationship between the
generalization of the classic zero-divisor graph introduced in [11] (for conve-
nience, we denote it by Γb) and the one given in this article. First of all, it is
worth mentioning that Γ(M) is a subgraph of Γb, that is, if m,n ∈ Z(M)∗ are
adjacent in Γ(M), or equivalently either n(mR : M) = 0 or m(nR : M) = 0,
then (nR : M)(mR : M)M = 0. However, the converse is not the case as we
observe in the following example.

Example 3.1. Let M = Z2⊕Z4 as a Z-module. Then the Γb is K7. However,
Γ(M) is different from K7 as we observe in Figure 2:

However, when M is a multiplication module (i.e., for every submodule N
of M there exists an ideal I of R such that N = MI), then Γ(M) = Γb. Let
(mR : M)(nR : M)M = 0. As such, (nR : M)M = nR and (mR : M)M =
mR; so both m(nR : M) = 0 and n(mR : M) = 0.
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