1 |
K. Kimura and N. Terai, Arithmetical rank of Gorenstein squarefree monomial ideals of height three, J. Algebra 422 (2015), 11-32.
DOI
|
2 |
A. Nikseresht and R. Zaare-Nahandi, On generalization of cycles and chordality to clutters from an algebraic viewpoint, Algebra Colloq. 24 (2017), no. 4, 611-624.
|
3 |
N. Terai and N. V. Trung, On the associated primes and the depth of the second power of squarefree monomial ideals, J. Pure Appl. Algebra 218 (2014), no. 6, 1117-1129.
DOI
|
4 |
R. Woodroofe, Vertex decomposable graphs and obstructions to shellability, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3235-3246.
DOI
|
5 |
D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, in Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61-72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
|
6 |
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
DOI
|
7 |
C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl, and T. Vu, The Waldschmidt constant for squarefree monomial ideals, J. Algebraic Combin. 44 (2016), no. 4, 875-904.
|
8 |
W. Bruns and J. Gubeladze, Combinatorial invariance of Stanley-Reisner rings, Georgian Math. J. 3 (1996), no. 4, 315-318.
DOI
|
9 |
W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
|
10 |
E. Connon and S. Faridi, Chorded complexes and a necessary condition for a monomial ideal to have a linear resolution, J. Combin. Theory Ser. A 120 (2013), no. 7, 1714-1731.
DOI
|
11 |
J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011.
|