Browse > Article
http://dx.doi.org/10.4134/JKMS.j170699

SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS  

Nikseresht, Ashkan (Department of Mathematics Institute for Advanced Studies in Basic Sciences)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.6, 2018 , pp. 1381-1388 More about this Journal
Abstract
Let ${\Delta}$ be a simplicial complex, $I_{\Delta}$ its Stanley-Reisner ideal and $K[{\Delta}]$ its Stanley-Reisner ring over a field K. Assume that ${\Gamma}(R)$ denotes the zero-divisor graph of a commutative ring R. Here, first we present a condition on two reduced Noetherian rings R and R', equivalent to ${\Gamma}(R){\cong}{\Gamma}(R{^{\prime}})$. In particular, we show that ${\Gamma}(K[{\Delta}]){\cong}{\Gamma}(K^{\prime}[{\Delta}^{\prime}])$ if and only if ${\mid}Ass(I_{\Delta}){\mid}={\mid}Ass(I_{{{\Delta}^{\prime}}}){\mid}$ and either ${\mid}K{\mid}$, ${\mid}K^{\prime}{\mid}{\leq}{\aleph}_0$ or ${\mid}K{\mid}={\mid}K^{\prime}{\mid}$. This shows that ${\Gamma}(K[{\Delta}])$ contains little information about $K[{\Delta}]$. Then, we define the squarefree zero-divisor graph of $K[{\Delta}]$, denoted by ${\Gamma}_{sf}(K[{\Delta}])$, and prove that ${\Gamma}_{sf}(K[{\Delta}){\cong}{\Gamma}_{sf}(K[{\Delta}^{\prime}])$ if and only if $K[{\Delta}]{\cong}K[{\Delta}^{\prime}]$. Moreover, we show how to find dim $K[{\Delta}]$ and ${\mid}Ass(K[{\Delta}]){\mid}$ from ${\Gamma}_{sf}(K[{\Delta}])$.
Keywords
squarefree monomial ideal; Stanley-Reisner ideal; simplicial complex; zero-divisor graph;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kimura and N. Terai, Arithmetical rank of Gorenstein squarefree monomial ideals of height three, J. Algebra 422 (2015), 11-32.   DOI
2 A. Nikseresht and R. Zaare-Nahandi, On generalization of cycles and chordality to clutters from an algebraic viewpoint, Algebra Colloq. 24 (2017), no. 4, 611-624.
3 N. Terai and N. V. Trung, On the associated primes and the depth of the second power of squarefree monomial ideals, J. Pure Appl. Algebra 218 (2014), no. 6, 1117-1129.   DOI
4 R. Woodroofe, Vertex decomposable graphs and obstructions to shellability, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3235-3246.   DOI
5 D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, in Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61-72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
6 D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.   DOI
7 C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl, and T. Vu, The Waldschmidt constant for squarefree monomial ideals, J. Algebraic Combin. 44 (2016), no. 4, 875-904.
8 W. Bruns and J. Gubeladze, Combinatorial invariance of Stanley-Reisner rings, Georgian Math. J. 3 (1996), no. 4, 315-318.   DOI
9 W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
10 E. Connon and S. Faridi, Chorded complexes and a necessary condition for a monomial ideal to have a linear resolution, J. Combin. Theory Ser. A 120 (2013), no. 7, 1714-1731.   DOI
11 J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011.