THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS IN A NONCOMMUTATIVE RING

JUNCHEOL HAN

ABSTRACT. Let R be a ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. First, we investigate some connected conditions of the zero-divisor graph $\Gamma(R)$ of a noncommutative ring R as follows: (1) if $\Gamma(R)$ has no sources and no sinks, then $\Gamma(R)$ is connected and diameter of $\Gamma(R)$, denoted by diam($\Gamma(R)$) (resp. girth of $\Gamma(R)$, denoted by $g(\Gamma(R))$) is equal to or less than 3; (2) if X is a union of finite number of orbits under the left (resp. right) regular action on X by G, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. $g(\Gamma(R))$) is equal to or less than 3, in addition, if R is local, then there is a vertex of $\Gamma(R)$ which is adjacent to every other vertices in $\Gamma(R)$; (3) if R is unitregular, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. $g(\Gamma(R))$) is equal to or less than 3. Next, we investigate the graph automorphisms group of $\Gamma(\operatorname{Mat}_2(\mathbb{Z}_p))$ where $\operatorname{Mat}_2(\mathbb{Z}_p)$ is the ring of 2 by 2 matrices over the galois field \mathbb{Z}_p (p is any prime).

1. Introduction and basic definitions

The zero-divisor graph of a commutative ring has been studied extensitively by Akbari, Anderson, Frazier, Lauve, Livinston, and Maimani in [1, 2, 3] since its concept had been introduced by Beck in [4]. Recently, the zero-divisor graph of a noncommutative ring (resp. a semigroup) has also been studied by Redmond and Wu (resp. F. DeMeyer and L. DeMeyer) in [12, 13, 14] (resp. [6]). The zero-divisor graph is very useful to find the algebraic structures and properties of rings. In this paper, the zero-divisor graph of a noncommutative ring is also studied by considering some group actions.

Throughout this paper all rings are assumed to be rings with identity. For a ring R, let $Z_{\ell}(R)$ (resp. $Z_r(R)$) be the set of all left (resp. right) zerodivisors of R, $Z(R) = Z_{\ell}(R) \cup Z_r(R)$ and $\Gamma(R)$ be the zero-divisor graph of R consisting of all vertices in $Z(R)^* = Z(R) \setminus \{0\}$, the set of all nonzero left or right zero-divisors of R, and edges $x \longrightarrow y$, which means that xy = 0for $x, y \in Z(R)^*$. If there exist vertices $x_0, \ldots, x_n \in Z(R)^*$ such that P:

O2008 The Korean Mathematical Society

Received March 7, 2007; Revised October 4, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 05C20; Secondary 16W22.

Key words and phrases. connected (resp. complete) zero-divisor graph, left (resp. right) regular action, orbit, graph automorphisms group.

 $x_0 \longrightarrow x_1 \longrightarrow \cdots \longrightarrow x_{n-1} \longrightarrow x_n$ where $x_i \neq x_j$ for all $i, j = 0, 1, \ldots, n$ $(i \neq j)$ for some positive integer n, then P is called a *path* from x_0 to x_n of length n. We will denote d(x, y) by the length of the shortest path from x to y, otherwise, $d(x, y) = \infty$. Recall that $\Gamma(R)$ is *connected* if for all distinct vertices $x, y \in Z(R)^*$ there exists a path from x to y. The *diameter* of $\Gamma(R)$ (denoted by diam($\Gamma(R)$)) is defined by the supremum of d(x, y) for all distinct vertices x and y in $\Gamma(R)$. In particular, if x = y and d(x, x) = k, then the path is called the *cycle* of length k. Usually vertices of a path may be considered to be distinct, however in a cycle, the initial and the final vertices are the same. If $\Gamma(R)$ contains a cycle, then the *girth* of $\Gamma(R)$ (denoted by $g(\Gamma(R))$) is defined by the length of the shortest cycle in $\Gamma(R)$, otherwise, $g(\Gamma(R)) = \infty$. In [7, Proposition 1.3.2], if $\Gamma(R)$ contains a cycle, then 1 + 2diam($\Gamma(R)$) $\geq g(\Gamma(R))$. We say that $\Gamma(R)$ is *complete* if xy = 0 for any distinct vertices x, y in $\Gamma(R)$.

For a ring R, let X(R) (simply, denoted by X) be the set of all nonzero, nonunits of R, G(R) (simply, denoted by G) be the group of all units of R and J(R) (simply, denoted by J) be the Jacobson radical of R. In this paper, we will consider some group actions on X by G given by $(g, x) \longrightarrow gx$ (resp. $(g, x) \longrightarrow xg^{-1}$ from $G \times X$ to X, called the left (resp. right) regular action. If $\phi : G \times X \longrightarrow X$ is the left (resp. right) regular action, then for each $x \in X$, we define the orbit of x by $o_{\ell}(x) = \{\phi(g, x) = gx : \forall g \in G\}$ (resp. $o_r(x) = \{\phi(g, x) = xg^{-1} : \forall g \in G\}$. Recall that G is transitive on X (or G acts transitively on X) under the regular action on X by G if there is an $x \in X$ with $o_{\ell}(x) = X$ (resp. $o_r(x) = X$) and the left (resp. right) regular action on X by G is trivial if $o_{\ell}(x) = \{x\}$ (resp. $o_r(x) = \{x\}$) for all $x \in X$. In [8], it has been shown that if X is a union of a finite n number of orbits under the left regular action on X by G, then $x^{n+1} = 0$ for all $x \in J$ and X is the set of all nonzero right zero-divisors of R. Similarly, it is also shown that if X is a union of a finite n number of orbits under the right regular action on X by G, then $x^{n+1} = 0$ for all $x \in J$ and X is the set of all nonzero left zero-divisors of R.

Recall that for all $x \in X$ the set $\operatorname{ann}_{\ell}(x) = \{y \in X : yx = 0\}$ (resp. $\operatorname{ann}_r(x) = \{z \in X : xz = 0\}$) is called a left (resp. right) annihilator of x. Let $\operatorname{ann}^*_{\ell}(x) = \operatorname{ann}_{\ell}(x) \setminus \{0\}$ (resp. $\operatorname{ann}^*_r(x) = \operatorname{ann}_r(x) \setminus \{0\}$). Given a zerodivisor graph $\Gamma(R)$ and a vertex $x \in Z(R)^*$, the *indegree* (resp. *outdegree*) of x (denoted by indegree(x) (resp. outdegree(x)) is the number of edges arriving (resp. leaving) at x. That is, indegree(x) = $|\operatorname{ann}^*_{\ell}(x)|$ (resp. outdegree(x) = $|\operatorname{ann}^*_r(x)|$). A vertex of indegree 0 (resp. outdegree 0) is called a *source* (resp. *sink*).

In Section 2, some connected conditions of the zero-divisor graph of a noncommutative ring R are investigated as follows: (1) if $\Gamma(R)$ has no sources and no sinks, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. $g(\Gamma(R))$) is equal to or less than 3; (2) if X is a union of finite number of orbits under the left (resp. right) regular action on X by G, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. $g(\Gamma(R))$) is equal to or less than 3, in addition, if R is a local ring, then there exists a vertex of $\Gamma(R)$ which is adjacent to every other vertices in $\Gamma(R)$; (4) if R is a unit-regular ring, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. $g(\Gamma(R))$) is equal to or less than 3.

In [3], Anderson and Livingston have shown that distinct ring automorphisms of a finite ring R which is not a field induce distinct graph automorphisms of $\Gamma(R)$ and determined $\operatorname{Aut}(\Gamma(R))$, the graph automorphisms group of $\Gamma(R)$. In particular, they have computed $\operatorname{Aut}(\Gamma(\mathbb{Z}_n))$.

In Section 3, when $R = \operatorname{Mat}_2(\mathbb{Z}_p)$, the ring of 2 by 2 matrices over the Galois field \mathbb{Z}_p (*p* is any prime), we will show that $\operatorname{Aut}(\Gamma(R))$ is isomorphic to the group S_{p+1} , the symmetric group of degree p+1 by investigating that (1) the number of orbits under the left (resp. right) regular action on X by G is p+1; (2) the number of nonzero nilpotents in R is $p^2 - 1$; (3) $\operatorname{Aut}(\Gamma(R)) \neq \{1\}$; (4) under the left (resp. right) regular action on X by G, $o_\ell(a) \cap N(p) = o_r(a) \cap N(p) = o_\ell(a) \cap o_r(a)$ for all $a \in N(p)$ where N(p) is the set of all nonzero nilpotents in R.

2. Connected zero-divisor graph under the left (resp. right) regular action

For a subset S of $Z(R)^*$, we will denote the subgraph of $\Gamma(R)$ with vertices in S by $\Gamma_S(R)$.

Proposition 2.1. Let R be a ring. If the left (or right) regular action of G on X is transitive, then $\Gamma_X(R)$ is complete.

Proof. Since the left regular action of G on X is transitive, R is a local ring and $J^2 = 0$ by [8, Corollary 2.4], and so $Z(R)^* = X$ and $\Gamma_X(R)$ is complete. If the right regular action of G on X is transitive, then $Z(R)^* = X$ and $\Gamma_X(R)$ is also complete by the similar argument.

Remark 1. In Proposition 2.1, we see that if the left (resp. right) regular action on X by G is transitive, then $x^2 = 0$, i.e., x is a nilpotent element of nilpotency 2 for all $x \in X$.

Theorem 2.2. Let R be a ring. If $\Gamma(R)$ has no sources and no sinks, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. $g(\Gamma(R))$) is equal to or less than 3.

Proof. Let $x, y \in Z(R)^*(x \neq y)$ be arbitrary. Since $\Gamma(R)$ has no sources and no sinks, i.e., $\operatorname{ann}^*_{\ell}(x) \neq \emptyset$ (resp. $\operatorname{ann}^*_r(x) \neq \emptyset$), there exists an element $a \in X$ (resp. $b \in X$) such that xa = 0 (resp. by = 0). If ab = 0, then $x \longrightarrow a \longrightarrow$ $b \longrightarrow y$ is a path of length 3. If $ab \neq 0$, then $x \longrightarrow ab \longrightarrow y$ is a path of length 2. In particular, if we let x = y, then $g(\Gamma(R))$ is equal to or less than 3. \Box

Example 1 (See Example 1.5, p. 5 in [5]). Let

$$R = \left\{ \begin{pmatrix} \mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \\ 0 & \mathbb{Z}/2\mathbb{Z} \end{pmatrix} \right\} \text{ and take } a = \begin{pmatrix} 2 & 0 \\ 0 & \overline{1} \end{pmatrix} \in R.$$

Since the left annihilator of a is equal to $\{0\}$ but the right annihilator of a is not equal to $\{0\}$, a is not a left zero-divisor, and so a is an origin but a is a right zero-divisor. Since there is no path from a to a^2 , $\Gamma(R)$ is not connected. Let

$$S = \left\{ \begin{pmatrix} \mathbb{Z} & 0 \\ \mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \end{pmatrix} \right\}$$
 and take $c = \begin{pmatrix} 2 & 0 \\ 0 & \overline{1} \end{pmatrix} \in S.$

Similarly, we note that c is not a right zero-divisor, and so c is a sink but c is a left zero-divisor. Since there is also no path from c^2 to c, $\Gamma(S)$ is not connected.

Remark 2. In [3, Theorem 2.3], Anderson and Livingston have shown that for every commutative ring R, $\Gamma(R)$ is connected and diam($\Gamma(R)$) is equal to or less than 3. But by Example 1 we can note that there is a noncommutative ring in which its zero-divisor graph is not connected and also note that the condition [there are no sources and no sinks in the zero-divisor graph of a noncommutative ring] is not superfluous to be connected.

Theorem 2.3. Let R be a ring such that X is a union of finite number of orbits under the left and right regular action on X by G. Then $X = Z^*(R)$, and so $\Gamma_X(R)$ is connected and diam $(\Gamma_X(R))$ (resp. $g(\Gamma(R))$) is equal to or less than 3.

Proof. Since X is a union of finite number of orbits under the left regular action on X by G, then $Z_{\ell}^*(R) \subseteq Z_r^*(R) = X$ by [8, Theorem 2.2]. Similarly, we can show that if X is a union of finite number of orbits under the right regular action on X by G, then $Z_r^*(R) \subseteq Z_{\ell}^*(R) = X$. Thus $Z^*(R) = Z_{\ell}^*(R) = Z_r^*(R) = X$, which implies that $\Gamma(R)$ has no sources and no sinks, and so $\Gamma_X(R)$ is connected and diam $(\Gamma_X(R))$ (resp. $g(\Gamma(R))$) is equal to or less than 3 by Theorem 2.2. \Box

Corollary 2.4. Let R be a ring such that $X \neq \emptyset$. If X is finite, then $X = Z^*(R)$, and so R is finite and $(|X|+1)^2 \ge |R|$.

Proof. Since $X \neq \emptyset$ and is finite, X is a union of finite number of orbits under the left and right regular action on X by G, and so we have $X = Z^*(R)$ by the argument given in the proof of Theorem 2.3. Hence R is finite and then $(|X|+1)^2 \geq |R|$ by [11, Theorem I].

Corollary 2.5. Let R be a finite ring. Then $\Gamma_X(R)$ is connected and $\operatorname{diam}(\Gamma_X(R))$

(resp. $g(\Gamma(R))$) is equal to or less than 3.

Proof. Since R is a finite ring, X is a union of finite number of orbits under the left and right regular action on X by G. Hence it follows from Theorem 2.3. \Box

Proposition 2.6. Let n be any positive integer and R be the matrix ring of all $n \times n$ matrices over a division ring D. Then $X = Z^*(R)$, and so $\Gamma_X(R)$ is connected and diam $(\Gamma_X(R))$ (resp. $g(\Gamma(R))$) is equal to or less than 3.

Proof. Let $x \in X$ be arbitrary. Then there exists $y \in X$ (resp. $z \in X$) such that xy = 0 (resp. zx = 0), which implies that $\operatorname{ann}_r^*(x) \neq \emptyset$ (resp. $\operatorname{ann}_\ell^*(x) \neq \emptyset$) for all $x \in X$, i.e., $X = Z^*(R)$. Hence $\Gamma_X(R)$ is connected and diam($\Gamma(R)$) (resp. $g(\Gamma(R))$) is equal to or less than 3 by Theorem 2.2.

Lemma 2.7. Let R and S be two rings. If $\Gamma(R)$ and $\Gamma(S)$ have no sources (resp. no sinks), then $\Gamma(R \times S)$ has no sources (resp. no sinks).

Proof. Let $(x_R, x_S) \in Z^*(R \times S)$ be arbitrary. Then $x_R \in Z^*(R)$ or $x_S \in Z^*(S)$. If $x_R \in Z^*(R)$, then there is $y_R \in X(R)$ such that $y_R x_R = 0_R$ where 0_R is the additivite identity of R since $\Gamma(R)$ has no origins. Thus $(y_R, 0_S)(x_R, x_S) = (0_R, 0_S)$ where 0_S is the additivite identity of S, and so $\Gamma(R \times S)$ has no sources. Similarly, if $x_S \in Z^*(S)$, then $\Gamma(R \times S)$ has no sources. By the similar argument, if $\Gamma(R)$ and $\Gamma(S)$ have no sinks, then $\Gamma(R \times S)$ has no sinks.

Corollary 2.8. Let R_1, R_2, \ldots, R_n be rings for some positive integer n. If all $\Gamma(R_i)$ for $i = 1, 2, \ldots, n$ have no sources (resp. sinks), then $\Gamma(R_1 \times R_2 \times \cdots \times R_n)$ has no sources (resp. no sinks).

Proof. It follows from the Lemma 2.7 and the mathematical induction on n. \Box

Proposition 2.9. Let R be a ring with $X = o_r(x) \cup o_r(x^2) \cup \cdots \cup o_r(x^n)$ (resp. $X = o_\ell(x) \cup o_\ell(x^2) \cup \cdots \cup o_\ell(x^n)$) under the right (resp. left) regular action on X by G for some positive integer n. If n = 1 and $|X| \ge 3$, or n = 2 and $o_r(x^2) \ne \{x^2\}$, or n = 3 and $o_r(x^i) \ne \{x^i\}$ for some i = 2 or 3, or $n \ge 4$, then there exists a cycle of length 3 in $\Gamma(R)$.

Proof. Consider the right regular action of G on X. If n = 1, right regular action is transitive, then $\Gamma(R)$ is complete by Proposition 2.1. Since $|X| \geq 3$, there exists a cycle of length 3 in $\Gamma(R)$. If n = 2 and $o_r(x^2) \neq \{x^2\}$, then there exists $g \in G$ such that $x^2g \neq x^2$. Since $X = o(x) \cup o(x^2)$ and $x^2g \in X$, $x^2g = hx$ or hx^2 for some $h \in G$. Thus $x^2 \longrightarrow x \longrightarrow x^2g \longrightarrow x^2$ is a cycle of length 3. If n = 3 and $o_r(x^i) \neq \{x^i\}$ for some i = 2 or 3, then there exists $g \in G$ such that $x^ig \neq x^i$. Since $X = o(x) \cup o(x^2)$ and $x^ig \in X$, $x^ig = hx$ or hx^2 for some $h \in G$. Thus $x^2 \longrightarrow x \longrightarrow x^2g \longrightarrow x^2$ is a cycle of length 3. If n = 3 and $o_r(x^i) \neq \{x^i\}$ for some i = 2 or 3, then there exists $g \in G$ such that $x^ig \neq x^i$. Since $X = o(x) \cup o(x^2) \cup o(x^3)$ and $x^ig \in X$, $x^ig = hx$ or hx^2 or hx^3 for some $h \in G$. Thus $x^3 \longrightarrow x^2 \longrightarrow x^ig \longrightarrow x^3$ is a cycle of length 3. Finally, if $n \geq 4$, then clearly $x^{n-2} \longrightarrow x^{n-1} \longrightarrow x^n \longrightarrow x^{n-2}$ is a cycle of length 3. Similarly, the result holds under the left regular action of G on X.

Remark 3. Let R be a ring. Then for each $x \in X$, $\operatorname{ann}_{\ell}^{*}(x)$ (resp. $\operatorname{ann}_{r}^{*}(x)$) is a union of orbits under the left (resp. right) regular action on X by G. Indeed, let $y \in \operatorname{ann}_{\ell}^{*}(x)$ be arbitrary. Then we have $o_{\ell}(y) \subseteq \operatorname{ann}_{\ell}^{*}(x)$, and so $\bigcup_{y \in \operatorname{ann}_{\ell}^{*}(x)} o_{\ell}(y) \subseteq \operatorname{ann}_{\ell}^{*}(x)$. Clearly, $\operatorname{ann}_{\ell}^{*}(x) \subseteq \bigcup_{y \in \operatorname{ann}_{\ell}^{*}(x)} o_{\ell}(y)$. Hence $\operatorname{ann}_{\ell}^{*}(x) = \bigcup_{y \in \operatorname{ann}_{\ell}^{*}} o_{\ell}^{*}(y)$, i.e., $\operatorname{ann}_{\ell}^{*}(x)$ is a union of orbits under the left regular action on X by G. By the similar argument, $\operatorname{ann}_{r}^{*}(x)$ is a union of orbits under the right regular action on X by G. **Theorem 2.10.** Let R be a ring such that X is a union of finite number of orbits under the left (resp. right) regular action on X by G. If R is a local ring, then there is a vertex of $\Gamma_X(R)$ which is adjacent to every other vertex in $\Gamma_X(R)$.

Proof. Let X be a union of n orbits under the left (resp. right) regular action on X by G. Since R is a local ring, by [8, Lemma 2.3] there exists $x \in X$ such that $x^n \neq 0 = x^{n+1}$ and $X = o_\ell(x) \cup o_\ell(x^2) \cup \cdots \cup o_\ell(x^n)$. Hence we have $\operatorname{ann}_\ell(x^n) = X$, i.e., $a \longrightarrow x^n$ for all $a \in X$, which means that x^n is adjacent to every other vertex in $\Gamma_X(R)$. By the similar argument, we can show that if X is a union of n orbits under the right regular action on X by G, then there exists $y \in X$ such that $y^n \neq 0 = y^{n+1}$ and $X = o_r(y) \cup o_r(y^2) \cup \cdots \cup o_r(y^n)$. Thus $\operatorname{ann}_r(y^n) = X$, i.e., $y^n \longrightarrow b$ for all $b \in X$, which means that y^n is adjacent to every other vertex in $\Gamma_X(R)$. \Box

Remark 4. We note that in the proof of Theorem 2.11 if R is a local ring such that $X = o_{\ell}(x) \cup o_{\ell}(x^2) \cup \cdots \cup o_{\ell}(x^n)$ (resp. $X = o_r(x) \cup o_r(x^2) \cup \cdots \cup o_r(x^n)$) with $x^n \neq 0 = x^{n+1}$ under the left (resp. right) regular action on X by G, then the subgraph $\Gamma_{o_{\ell}(x^n)}$ (resp. $\Gamma_{o_r(x^n)}$) of $\Gamma_X(R)$ is complete.

Corollary 2.11. If R is a finite local ring, then there is a vertex of $\Gamma_X(R)$ which is adjacent to every other vertex in $\Gamma_X(R)$.

Proof. Since R is a finite ring, X is a union of finite number of orbits under the left and right regular action on X by G. Hence it follows from Theorem 2.10.

Recall that a ring R is called *unit-regular* if for every $x \in R$ there exists a unit $g \in R$ such that xgx = x. In [10], it has been shown that R is a unit-regular ring if and only if for every orbit $o_{\ell}(x)$ $(x \in X)$ under the left regular action on X by G, there exists some idempotent $e \in X$ such that $o_{\ell}(x) = o_{\ell}(e)$. Similarly, we can show that R is a unit-regular ring if and only if for every orbit $o_r(x)$ $(x \in X)$ under the right regular action of G on X, there exists some idempotent $e \in X$ such that $o_r(x) = o_r(e)$.

Proposition 2.12. Let R be a unit-regular ring such that $X \neq \emptyset$. Then $\Gamma_X(R)$ is connected and diam $(\Gamma_X(R))$ (resp. $g(\Gamma(R))$) is equal to or less than 3.

Proof. Let $x \in X$ be arbitrary. Then there exists an idempotent $e_1 \in X$ such that $o_{\ell}(x) = o_{\ell}(e_1)$ under the left regular action on X by G by [10, Lemma 2.3]. By the similar argument, there exists an idempotent $e_2 \in X$ such that $o_r(x) = o_r(e_2)$ under the right regular action on X by G. Hence there exists $g_1 \in G$ (resp. $g_2 \in G$) such that $x = g_1e_1$ (resp. $x = e_2g_2$). Since $x(1-e_1) = g_1e_1(1-e_1) = 0$ (resp. $(1-e_2)x = (1-e_2)e_2g_2 = 0$, x is neither source nor sink. Thus $\Gamma_X(R)$ is connected and diam $(\Gamma_X(R))$ is equal to or less than 3 by Theorem 2.2.

Proposition 2.13. Let R be a unit-regular ring. Then $\Gamma_X(R)$ is complete if and only if the set of all idempotents in R is orthogonal and the left regular action on X by G is trivial, i.e., $o_{\ell}(x) = \{x\}$ for all $x \in X$.

Proof. (\Rightarrow) Suppose that $\Gamma_X(R)$ is complete. Clearly, the set of all idempotents in R is orthogonal. Assume that the left regular action of G on X is not trivial. Then there exists an idempotent $e \in X$ such that $o_{\ell}(e) \neq \{e\}$ by [10, Lemma 2.3] and so there exists $y \neq e \in o_{\ell}(e)$ such that y = ge for some $g \in G$. Since $\Gamma_X(R)$ is complete and $y, e(y \neq e) \in X$, 0 = ye = (ge)e = ge = y, a contradiction. Hence the left regular action on X by G is trivial.

 (\Leftarrow) It follows from [10, Lemma 2.3].

Corollary 2.14. Let R be a unit-regular ring. Then $\Gamma_X(R)$ is complete if and only if the set of all idempotents in R is orthogonal and the right regular action on X by G is trivial, i.e., $o_r(x) = \{x\}$ for all $x \in X$.

Proof. It follows from the similar argument given in the proof of Proposition 2.13.

Lemma 2.15. Let R be a ring. If under the left (resp. right) regular action on X by G, $y \in o_{\ell}(x)$ (resp. $y \in o_r(x)$) for some $x \in X$, then $\operatorname{ann}_r(x) = \operatorname{ann}_r(y)$ $(resp. \operatorname{ann}_{\ell}(x) = \operatorname{ann}_{\ell}(y)).$

Proof. If $y \in o_{\ell}(x)$ (resp. $y \in o_r(x)$) for some $x \in X$, then there exists $g \in G$ (resp. $h \in G$) such that y = gx (resp. y = xh). It is obvious to show that $\operatorname{ann}_r(x) = \operatorname{ann}_r(y)$ (resp. $\operatorname{ann}_\ell(x) = \operatorname{ann}_\ell(y)$). \square

Corollary 2.16. Let R be a unit-regular ring with $X \neq \emptyset$. Then for any $x \in X$ there exists an idempotent $e \in X$ such that $\operatorname{ann}_r(x) = \operatorname{ann}_r(e)$ (resp. $\operatorname{ann}_{\ell}(x) = \operatorname{ann}_{\ell}(e)$.

Proof. It follows from the Lemma 2.15 and [10, Lemma 2.3].

Proposition 2.17. Let R be a unit-regular ring such that $X \neq \emptyset$ and $2 = 2 \cdot 1$ is a unit in R. Then there exists a cycle of length 4 in $\Gamma(R)$.

Proof. Let $e \in X$ be an idempotent. Since $2 = 2 \cdot 1 \in G$, $e \neq 1 - e, -e$. Thus $e \longrightarrow 1 - e \longrightarrow -e \longrightarrow e - 1 \longrightarrow e$ is a cycle of length 4 in $\Gamma(R)$. \square

3. Automorphism of graph over $Mat_2(\mathbb{Z}_p)$

Recall that a graph automorphism f of a graph $\Gamma(R)$ is a bijection f : $\Gamma(R) \longrightarrow \Gamma_X(R)$ which preserves adjacency. Of course, the set Aut($\Gamma(R)$) of all graph automorphisms of $\Gamma(R)$ forms a group under the usual composition of functions. In [3], Anderson and Livingston computed $\operatorname{Aut}(\Gamma(\mathbb{Z}_n))$. In this section, we compute $\operatorname{Aut}(\Gamma(\operatorname{Mat}_2(\mathbb{Z}_p)))$ where $\operatorname{Mat}_2(\mathbb{Z}_p)$ is the matrix ring of all 2×2 matrices over \mathbb{Z}_p for any prime p.

Lemma 3.1. Let R be a ring and $f : \Gamma_X(R) \longrightarrow \Gamma_X(R)$ be a graph automorphism of $\Gamma_X(R)$. Then for all $x \in X$, $f(\operatorname{ann}_\ell(x)) = \operatorname{ann}_\ell(f(x))$ (resp. $f(\operatorname{ann}_r(x)) = \operatorname{ann}_r(f(x))$).

Proof. Let $y \in f(\operatorname{ann}_{\ell}(x))$ be arbitrary. Then y = f(z) for some $z \in \operatorname{ann}_{\ell}(x)$. Since zx = 0, 0 = f(zx) = f(z)f(x) = yf(x) and so $y \in \operatorname{ann}_{\ell}(f(x))$. Hence $f(\operatorname{ann}_{\ell}(x)) \subseteq \operatorname{ann}_{\ell}(f(x))$. Let $z \in \operatorname{ann}_{\ell}(f(x))$ be arbitrary. Then zf(x) = 0. Since f is one to one, there exists $z_1 \in X$ such that $f(z_1) = z$. Then $0 = zf(x) = f(z_1)f(x) = f(z_1x)$, and so $z_1x = 0$. Since $z_1 \in \operatorname{ann}_{\ell}(x)$ and $z = f(z_1) \in f(\operatorname{ann}_{\ell}(x))$, $\operatorname{ann}_{\ell}(f(x)) \subseteq f(\operatorname{ann}_{\ell}(x))$. By the similar argument, we have $f(\operatorname{ann}_r(x)) = \operatorname{ann}_r(f(x))$.

In a ring R with identity the left (resp. right) regular action of G on X is said to be *half-transitive* if G is transitive on X or if $o_{\ell}(x)$ (resp. $o_r(x)$) is a finite set with $|o_{\ell}(x)| > 1$ (resp. $|o_r(x)| > 1$) and $|o_{\ell}(x)| = |o_{\ell}(y)|$ (resp. $|o_r(x)| = |o_r(y)|$) for all x and $y \in X$. In [9, Theorem 2.4 and Lemma 2.7], it was shown that if R is a matrix ring of all 2×2 matrices over a finite field F, then G is half-transitive on X by the left (resp. right) regular action and $|o_{\ell}(x)| = |F|^2 - 1$ (resp. $|o_r(x)| = |F|^2 - 1$) for all $x \in X$.

Lemma 3.2. Let p be a prime and $R = \operatorname{Mat}_2(\mathbb{Z}_p)$. Then for any $x \in X$, $\operatorname{ann}^*_\ell(x) = o_r(y)$ (resp. $\operatorname{ann}^*_r(x) = o_\ell(z)$) for some $y \in X$ (resp. $z \in X$).

Proof. By [9, Lemma 2.7], we have $|o_{\ell}(x)| = p^2 - 1$ (resp. $|o_r(x)| = p^2 - 1$) for all $x \in X$. Since $\operatorname{ann}_{\ell}^*(x)$ (resp. $\operatorname{ann}_r^*(x)$) is a union of a finite number of orbits under the left (resp. right) regular action of G on X by Remark 3 and since the left (resp. right) regular action of G on X is half-transitive by [9, Theorem 2.4], $|o_{\ell}(y)|$ (resp. $|o_r(z)|$) for all $y \in \operatorname{ann}_{\ell}^*(x)$ (resp. all $z \in \operatorname{ann}_r^*(x)$) is a divisor of $|\operatorname{ann}_{\ell}^*(x)|$ (resp. $|\operatorname{ann}_r^*(x)|$) and then $|\operatorname{ann}_{\ell}^*(x)| = p^2 - 1$ or $p^3 - 1$ (resp. $|\operatorname{ann}_r^*(x)| = p^2 - 1$ or $p^3 - 1$) since $|\operatorname{ann}_l(x)| = p^2$ or p^3 (resp. $|\operatorname{ann}_r(x)| = p^2$ or p^3) and so $|\operatorname{ann}_{\ell}^*(x)| = p^2 - 1$ (resp. $|\operatorname{ann}_r^*(x) = p^2 - 1$). Hence we have the result. □

Lemma 3.3. Let p be a prime and $R = Mat_2(\mathbb{Z}_p)$. Then the number of orbits under the left (resp. right) regular action on X by G is p + 1.

Proof. Let μ be the number of orbits under the left (resp. right) regular action on X by G. Note that $|G| = (p^2 - 1)(p^2 - p)$. Thus $|X| = |R| - |G| - 1 = p^4 - (p^2 - 1)(p^2 - p) - 1 = (p+1)(p^2 - 1)$. Since the cardinality of any orbit under the left (resp. right) regular action on X by G is $p^2 - 1$ by [9, Lemma 2.7], $\mu = |X|/(p^2 - 1) = p + 1$.

Lemma 3.4. Let p be a prime, $R = Mat_2(\mathbb{Z}_p)$ and let N(p) be the set of nonzero nilpotents in R. Then $|N(p)| = p^2 - 1$.

Proof. Let

$$N_1(p) = \left\{ \begin{pmatrix} a & b \\ \alpha a & \alpha b \end{pmatrix} \in N(p) \, | \, a, b, \alpha \neq 0 \right\}$$

and

$$N_2(p) = \left\{ \begin{pmatrix} a & -\alpha a \\ b & -\alpha b \end{pmatrix} \in N(p) \, | \, a, b, \alpha \neq 0 \right\}.$$

We will show that $N_1(p) = N_2(p)$. Let

$$\begin{pmatrix} a & -\alpha a \\ b & -\alpha b \end{pmatrix} \in N_2(p)$$

be arbitrary. Since $A^2 = 0$ and $a, b \neq 0$, we have

$$A = \begin{pmatrix} \alpha b & -\alpha^2 b \\ b & -\alpha b \end{pmatrix} \in N_2(p),$$

and also $(1/\alpha^2) \begin{pmatrix} \alpha b & -\alpha^2 b \\ b & -\alpha b \end{pmatrix} \in N_2(p).$ Since

$$(1/\alpha^2) \begin{pmatrix} \alpha b & -\alpha^2 b \\ b & -\alpha b \end{pmatrix} = \begin{pmatrix} (-1/\alpha)(-b) & -b \\ (-1/\alpha^2)(-b) & (-1/\alpha)(-b) \end{pmatrix} \in N_1(p),$$

we have $N_2(p) \subseteq N_1(p)$. By the similar argument, we can have $N_1(p) \subseteq N_2(p)$. Let A be any nonzero nilpotent in R. Then

$$A = \begin{pmatrix} a & b \\ \alpha a & \alpha b \end{pmatrix} \text{ or } \begin{pmatrix} a & \alpha a \\ a & \alpha b \end{pmatrix}$$

for some $\alpha \in \mathbb{Z}_p$.

Note that since A is a nonzero nilpotent in $R, b \neq 0$. Consider the following cases:

Case 1. $\alpha = 0$; Since

$$A^2 = 0, \ A = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}$$

for all nonzero $b \in \mathbb{Z}_p$.

Case 2. $\alpha \neq 0$;

In this case, $a \neq 0$. Hence we have $N_1(p) = N_2(p)$ by the above argument. Since $A^2 = 0$, we have $A = \begin{pmatrix} -\alpha b & b \\ -\alpha^2 b & \alpha b \end{pmatrix}$.

Consequently, we have

$$|N(p)| = |N_1(p)| + \left| \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \in N(p) : b(\neq 0) \right\} \right|$$

+
$$\left| \left\{ \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} \in N(p) : b(\neq 0) \right\} \right|$$

= $(p-1)(p-1) + 2(p-1) = p^2 - 1.$

_	_	-	
		L	
		L	

Example 2. Let $R = Mat_2(\mathbb{Z}_2)$. Then $X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$, where

$$x_{1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, x_{2} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, x_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, x_{4} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$
$$x_{5} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, x_{6} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, x_{7} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, x_{8} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, x_{9} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Note that $\{x_2, x_4, x_9\}$ is the set of nonzero nilpotents in R. Under the left (resp. right) regular action on X by G, there are three orbits $o_{\ell}(x_2) = \{x_2, x_6, x_7\}$, $o_{\ell}(x_4) = \{x_1, x_4, x_5\}$, $o_{\ell}(x_9) = \{x_3, x_8, x_9\}$ (resp. $o_r(x_2) = \{x_1, x_2, x_3\}$, $o_r(x_4) = \{x_4, x_6, x_8\}$, $o_r(x_9) = \{x_5, x_7, x_9\}$).

We can compute $\operatorname{Aut}(\Gamma(R)) = \{1, f, g, g \circ f, f \circ g, g \circ f \circ g\}$, where

$$f = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ x_3 & x_2 & x_1 & x_9 & x_7 & x_5 & x_8 & x_6 & x_4 \end{pmatrix},$$

$$g = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ x_6 & x_4 & x_8 & x_2 & x_1 & x_3 & x_7 & x_5 & x_9 \end{pmatrix}$$
are permutations.

Observe that $\operatorname{Aut}(\Gamma(R))$ is isomorphic to S_3 , the symmetric group of degree 3.

Theorem 3.5. Let p be a prime and $R = Mat_2(\mathbb{Z}_p)$. Then $Aut(\Gamma(R)) \neq \{1\}$.

Proof. If p = 2, then Aut $(\Gamma(R)) \neq \{1\}$ by Example 2. Suppose that $p \geq 3$. Let N(p) be the set of nonzero nilpotents in R. Since the number orbits is p+1 by Lemma 3.3 under the left (resp. right) regular action on X by G and $|N(p)| = p^2 - 1$ by Lemma 3.4, there exists $x \in X$ such that $|o_\ell(x) \cap N(p)| \ge 2$. Let $x_1, x_2 \in o_l(x) \cap N(p)$ $(x_1 \neq x_2)$. Since x_1 and x_2 are nilpotents, we have $ann_{\ell}^{*}(x_{1}) = o_{\ell}(x_{1}) = o_{\ell}(x_{2}) = ann_{\ell}^{*}(x_{2})$ by Lemma 3.2. We have also $\operatorname{ann}_{r}^{*}(x_{1}) = \operatorname{ann}_{r}^{*}(x_{2})$. Indeed, if $a \in \operatorname{ann}_{r}^{*}(x_{1})$, then $0 = x_{1}a = gx_{2}a = 0$ for some $g \in G$ since $x_2 \in o_\ell(x_1)$, which implies that $a \in \operatorname{ann}_r^*(x_2)$, and so $\operatorname{ann}_r^*(x_1) \subseteq \operatorname{ann}_r^*(x_2)$. By the similar argument, we have $\operatorname{ann}_r^*(x_2) \subseteq \operatorname{ann}_r^*(x_1)$. Also we have $\operatorname{ann}_{r}^{*}(x_{1}) = o_{r}(x_{1}) = o_{r}(x_{2}) = \operatorname{ann}_{r}^{*}(x_{2})$ by Lemma 3.2. Let $f = (x_1, x_2)$ be a transposition in $S_{|X|}$, the symmetric group of degree |X|. Since $x_1 \neq x_2$, $f \neq 1$. We will show that $f \in Aut(\Gamma(R))$. Consider $x_1y = 0$ for some $y \in X$. If $y = x_1$, then $f(x_1)f(y) = x_2x_2 = 0$. If $y = x_2$, then $f(x_1)f(y) = x_2x_1 = g_1x_1x_1 = 0$ for some $g_1 \in G$ since $x_2 \in o_l(x_1)$. If $y \neq 0$ x_1, x_2 , then $f(x_1)f(y) = x_2y = g_1x_1y = 0$ for some $g_1 \in G$ since $x_2 \in o_l(x_1)$. Also consider $zx_1 = 0$ for some $z \in X$. If $z = x_1$, then $f(z)f(x_1) = x_2x_2 = 0$. If $z = x_2$, then $f(z)f(x_1) = x_1x_2 = h_1x_2x_2 = 0$ for some $h_1 \in G$ since $x_1 \in o(x_2)$. If $z \neq x_1, x_2$, then $f(z)f(x_1) = zx_2 = zx_1h_2 = 0$ for some $h_2 \in G$ since $x_2 \in o_r(x_1)$. Consequently, $f \in Aut(\Gamma(R))$, and so $Aut(\Gamma(R)) \neq \{1\}$. \Box

Remark 5. Let p be a prime, $R = \text{Mat}_2(\mathbb{Z}_p)$ and N(p) be the set of nonzero nilpotents in R. We can choose that $f(\neq 1) \in \text{Aut}(\Gamma(R))$ by Theorem 3.5. Then we note that (1) $f(a) \in N(p)$ for all $a \in N(p)$; (2) since f is bijective

and the left (resp. right) regular action on X by G is half-transitive with $|o_{\ell}(x)| = p+1$ (resp. $|o_r(x)| = p+1$) for all $x \in X$, $|o_l(x) \cap N(p)| = p-1$ (resp. $|o_r(x) \cap N(p)| = p-1$) and $f(o_{\ell}(x)) = o_{\ell}(f(x))$ (resp. $f(o_r(x)) = o_r(f(x))$) by Lemma 3.1 and Lemma 3.2; (3) every orbit under the left (resp. right) regular action on X by G is $o_{\ell}(x)$ (resp. $o_r(x)$) for some nilpotent $x \in X$.

Lemma 3.6. Let p be a prime, $R = \text{Mat}_2(\mathbb{Z}_p)$ and N(p) be the set of all nonzero nilpotents in R. Then under the left (resp. right) regular action on X by G, $o_\ell(a) \cap N(p) = o_r(a) \cap N(p) = o_\ell(a) \cap o_r(a)$ for all $a \in N(p)$.

Proof. Let $b \in o_{\ell}(a) \cap N(p)$ be arbitrary. Since $o_{\ell}(a) = o_{\ell}(b)$, ba = ab = 0, and thus $b \in \operatorname{ann}_{r}^{*}(a) = o_{r}(a)$. Hence $o_{\ell}(a) \cap N(p) \subseteq o_{r}(a) \cap N(p)$ and $o_{\ell}(a) \cap N(p) \subseteq o_{\ell}(a) \cap o_{r}(a)$. By the similar argument, we have $o_{r}(a) \cap N(p) \subseteq o_{\ell}(a) \cap N(p) \subseteq o_{\ell}(a) \cap N(p) \subseteq o_{\ell}(a) \cap o_{r}(a)$. Therefore, $o_{\ell}(a) \cap N(p) = o_{r}(a) \cap N(p) \subseteq o_{\ell}(a) \cap o_{r}(a)$. By Remark 4, we already knew that $|o_{r}(a) \cap N(p)| = |o_{\ell}(a) \cap N(p)| = |o_{\ell}(a) \cap N(p)| = p - 1$. Next, we will show that $o_{\ell}(a) \cap N(p) = o_{\ell}(a) \cap o_{r}(a)$. Let $S = \operatorname{ann}_{\ell}(a) \cap \operatorname{ann}_{r}(a)$. Then $S = (o_{\ell}(a) \cap o_{r}(a)) \cup \{0\}$. Since S is an additive subgroup of $\operatorname{ann}_{\ell}(a)$ and $|\operatorname{ann}_{\ell}(a)| = p^{2}$, |S| = 1 or p. Since $|o_{\ell}(a) \cap o_{r}(a)| \ge |o_{\ell}(a) \cap N(p)| = p - 1 \ge 1$, $|S| = |o_{\ell}(a) \cap o_{r}(a)| + 1 \ge 2$, and thus |S| = p. Since $|o_{\ell}(a) \cap o_{r}(a)| = |S| - 1 = p - 1 = |o_{\ell}(a) \cap N(p)| = |o_{r}(a) \cap N(p)|$ and $o_{\ell}(a) \cap N(p), o_{r}(a) \cap N(p) \subseteq o_{\ell}(a) \cap o_{r}(a)$, we have $o_{\ell}(a) \cap N(p) = o_{r}(a) \cap N(p) = o_{\ell}(a) \cap N(p) =$

Remark 6. Let p be a prime, $R = \operatorname{Mat}_2(\mathbb{Z}_p)$ and N(p) be the set of nonzero nilpotents in R. We can choose $a_1, \ldots, a_{p+1} \in N(p)$ such that $X = o_\ell(a_1) \cup \cdots \cup o_\ell(a_{p+1})$ (resp. $X = o_r(a_1) \cup \cdots \cup o_r(a_{p+1})$). Note that for each $i = 1, \ldots, p+1$, $o_\ell(a_i) = o_\ell(a_i) \cap X = o_\ell(a_i) \cap [o_r(a_1) \cup \cdots \cup o_r(a_{p+1})] = [o_\ell(a_i) \cap o_r(a_1)] \cup \cdots \cup [o_\ell(a_i) \cap o_r(a_{p+1})].$

Lemma 3.7. Let p be a prime, $R = Mat_2(\mathbb{Z}_p)$ and N(p) be the set of nonzero nilpotents in R. Consider $X = o_\ell(a_1) \cup \cdots \cup o_\ell(a_{p+1})$ (resp. $X = o_r(a_1) \cup \cdots \cup o_r(a_{p+1})$) for some $a_1, \ldots, a_{p+1} \in N(p)$ as mentioned in Remark 6. Then under the left (resp. right) regular action on X by G, $|o_\ell(a_i) \cap o_r(a_j)| = p - 1$ for all $a_i, a_j \in N(p)$ $(i, j = 1, \ldots, p + 1)$.

Proof. Let $A_{ij} = \operatorname{ann}_{\ell}(a_i) \cap \operatorname{ann}_r(a_j)$ for all $i, j = 1, \ldots, p + 1$. Note that $A_{ij} = [o_{ell}(a_i) \cap o_r(a_j)] \cup \{0\}$. If i = j, then $|o_l(a_i) \cap o_r(a_j)| = p-1$ as given in the proof of Lemma 3.6. Suppose that $i \neq j$. Since A_{ij} ia an additive subgroup of $\operatorname{ann}_{\ell}(a_i)$ with $|\operatorname{ann}_{\ell}(a_i)| = p^2$, $|A_{ij}| = 1$ or p. Hence $|o_{\ell}(a_i) \cap o_r(a_j)| = 0$ or p-1. Assume that $|A_{ij}| = 1$ (equivalently, $|o_{\ell}(a_i) \cap o_r(a_j)| = 0$) for some i, j. Then $|A_{ik}| > |A_{ii}|$ for some k. Since $|A_{ii}| = p$ (equivalently, $|o_{\ell}(a_i) \cap o_r(a_j)| = p-1$) as given in the proof of Lemma 3.6, $|A_{ik}| > p$, a contradiction. Therefore, $|A_{ij}| = p$, and so $|o_{\ell}(a_i) \cap o_r(a_j)| = p-1$ for all $i, j = 1, \ldots, p+1$. □

Lemma 3.8. Let p be a prime, $R = Mat_2(\mathbb{Z}_p)$ and N(p) be the set of nonzero nilpotents in R. Consider $X = o_\ell(a_1) \cup \cdots \cup o_\ell(a_{p+1})$ (resp. $X = o_r(a_1) \cup \cdots \cup o_r(a_{p+1})$) for some $a_1, \ldots, a_{p+1} \in N(p)$ as mentioned in Remark 5. If

 $s_j = (1, j)$ is a transposition in S_{p+1} , the symmetric group of degree p+1, and $f_{s_j} : \Gamma(R) \longrightarrow \Gamma(R)$ is a bijective map such that $f_{s_j}(o_\ell(a_i)) = o_\ell(a_{s_j(i)})$, then f_{s_j} is a graph automorphism in $\Gamma(R)$.

Proof. Note that since $f_{s_j} : \Gamma(R) \longrightarrow \Gamma(R)$ is a bijective map such that $f_{s_j}(o_\ell(a_i)) = o_\ell(a_{s_j(i)}), f_{s_j}(o_\ell(a_i) \cap o_r(a_k)) = o_\ell(a_{s_j(i)}) \cap o_r(a_{s_j(k)})$ for all $i, k = 1, \ldots, p + 1$.

Let $x, y \in X$ be arbitrary. Consider the following cases.

Case 1. $x, y \in o_{\ell}(a_1) \cap o_r(a_1)$.

Since $a_1^2 = 0$, xy = yx = 0. Note that $f_{s_j}(x), f_{s_j}(y) \in o_\ell(a_j) = o_r(a_j)$, and so $f_{s_j}(x)f_{s_j}(y) = f_{s_j}(xy) = f_{s_j}(0) = 0$ and also $f_{s_j}(y)f_{s_j}(x) = 0$.

Case 2. $x, y \in o_{\ell}(a_j) \cap o_r(a_j)$.

By the similar argument given to the case 1, xy = yx = 0 and also $f_{s_j}(x)f_{s_j}(y) = f_{s_j}(y)f_{s_j}(x) = 0$.

Case 3. $x \in o_{\ell}(a_1) \cap o_r(a_1), y \in o_{\ell}(a_1) \cap o_r(a_j) \ (j \neq 1)$. Then yx = 0. Note that $f_{s_j}(x) \in o_{\ell}(a_j) \cap o_r(a_j), f_{s_j}(y) \in o_{\ell}(a_j) \cap o_r(a_1)$, and so $f_{s_j}(y)f_{s_j}(x) = 0$. Assume that xy = 0. Then $a_1a_j = 0$, which implies that $o_{\ell}(a_1) = o_{\ell}(a_j)$, a contradiction. Hence $xy \neq 0$. Assume that $f_{s_j}(x)f_{s_j}(y) = 0$. Since $f_{s_j}(x) \in o_{\ell}(a_j) \cap o_r(a_j), f_{s_j}(y) \in o_{\ell}(a_j) \cap o_r(a_1), a_ja_1 = 0$, which implies that $o_{\ell}(a_1) = o_{\ell}(a_j)$, also a contradiction. Hence we have $f_{s_j}(x)f_{s_j}(y) \neq 0$.

Case 4. $x \in o_{\ell}(a_j) \cap o_r(a_j), y \in o_{\ell}(a_1) \cap o_r(a_1)$. By the similar argument given to the case 3, xy = 0 and also $f_{s_j}(x)f_{s_j}(y) = 0$; $yx \neq 0$ and $f_{s_j}(y)f_{s_j}(x) \neq 0$.

Case 5. $x \in o_{\ell}(a_1) \cap o_r(a_i), y \in o_{\ell}(a_1) \cap o_r(a_k), (i, k \neq 1, j)$. Then $x = g_1 a_1 = a_i h_1, y = g_2 a_1 = a_k h_2$ for some $g_1, g_2, h_1, h_2 \in G$. If xy = 0, then $a_1 a_k = 0$, which implies that $o_{\ell}(a_1) = o_{\ell}(a_k)$, a contradiction. Hence we have $xy \neq 0$. Since $f(x) \in o_{\ell}(a_j) \cap o_r(a_i), f(y) \in o_{\ell}(a_j) \cap o_r(a_k)$, we also have $f(x)f(y) \neq 0$. Similarly, we have $yx \neq 0$ and $f(y)f(x) \neq 0$.

Case 6. $x \in o_{\ell}(a_i) \cap o_r(a_r), y \in o_{\ell}(a_k) \cap o_r(a_t), (i, k, r, s \neq 1, j).$ If xy = 0, then $a_i a_t = 0$. Since $f(x) \in o_{\ell}(a_i) \cap o_r(a_r), f(y) \in o_{\ell}(a_k) \cap o_r(a_s), f(x)f(y) = 0$. Similarly we have that if yx = 0, f(y)f(x) = 0.

Consequently, f_{s_j} is a graph automorphism in $\Gamma(R)$.

Theorem 3.9. Let p be a prime and let $R = \operatorname{Mat}_2(\mathbb{Z}_p)$. Then $\operatorname{Aut}(\Gamma(R)) \simeq S_{p+1}$ where S_{p+1} is the symmetric group of degree p+1.

Proof. Let N(p) be the set of nonzero nilpotents in R. We can choose a_1 , ..., $a_{p+1} \in N(p)$ such that $X = o_{\ell}(a_1) \cup \cdots \cup o_{\ell}(a_{p+1})$. Define $\sigma : S_{p+1} \longrightarrow \operatorname{Aut}(\Gamma(R))$ by $\sigma(s) = f_s$ for all $s \in S_{p+1}$ where $f_s(o_{\ell}(a_i)) = o_{\ell}(a_{s(i)})$ for all $i = 1, \ldots, p+1$. Then σ is well-defined and onto. Indeed, by Lemma 3.1 and Lemma 3.2, we have that if $f \in \operatorname{Aut}(\Gamma(R))$ is arbitrary, then for all $i = 1, \ldots, p+1$, $f(o_{\ell}(a_i)) = o_{\ell}(a_{s(i)})$ for some $s \in S_{p+1}$. Since S_{p+1} is generated by the p transpositions $s_1 = (1, 2), \ldots, s_p = (1, p+1)$, and $f_{s_1}, \ldots, f_{s_p} \in \operatorname{Aut}(r_{s(i)})$.

Aut($\Gamma(R)$) by Lemma 3.8, Aut($\Gamma(R)$) is generated by the p graph automorphisms $f_{s_1}, \ldots, f_{s_p} \in \operatorname{Aut}(\Gamma(R))$ where $f_{s_j}(o_\ell(a_i)) = o_\ell(a_{s_j(i)})$ for all $i = 1, \ldots, p + 1$ and $j = 1, \ldots, p$. Thus $|S_{p+1}| = |\operatorname{Aut}(\Gamma(R))|$, which implies that σ is a bijective map. Also σ is a group homomorphism by observing that for all $s_i, s_j \in S_{p+1}$ $(i, j = 1, \ldots, p)$ and all $o_\ell(a_k)$ $(k = 1, \ldots, p + 1)$, $(f_{s_i} \circ f_{s_j})(o_\ell(a_k)) = f_{s_i s_j}(o_\ell(a_k))$. Therefore, $\operatorname{Aut}(\Gamma(R)) \simeq S_{p+1}$.

Acknowledgements. The author thanks the referee for his/her helpful comments for the improvement of the paper, also the author thanks Prof. J. Park at Pusan National University for reading this paper and for kind comments.

References

- S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), no. 2, 847–855.
- [2] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, *The zero-divisor graph of a commutative ring. II*, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61–72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
- [3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447.
- [4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226.
- [5] A. W. Chatters and C. R. Hajarnavis, *Rings with chain conditions*, Research Notes in Mathematics, 44. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.
- [6] F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (2005), no. 1, 190–198.
- [7] R. Diestel, Graph Theory, Graduate Texts in Mathematics, Vol. 173, Springer-Verlag, New York, 1997.
- [8] J. Han, Regular action in a ring with a finite number of orbits, Comm. Algebra 25 (1997), no. 7, 2227–2236.
- [9] _____, Half-transitive group actions in a left Artinian ring, Kyungpook Math. J. 37 (1997), no. 2, 297–303.
- [10] _____, Group actions in a unit-regular ring, Comm. Algebra 27 (1999), no. 7, 3353– 3361.
- [11] N. Ganesan, Properties of rings with a finite number of zero divisors. II, Math. Ann. 161 (1965), 241–246.
- [12] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Commutative rings, 39–47, Nova Sci. Publ., Hauppauge, NY, 2002.
- [13] _____, Structure in the zero-divisor graph of a noncommutative ring, Houston J. Math. 30 (2004), no. 2, 345–355
- [14] T. Wu, On directed zero-divisor graphs of finite rings, Discrete Math. 296 (2005), no. 1, 73–86.

DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY PUSAN 609-735, KOREA *E-mail address*: jchan@pusan.ac.kr