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THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS IN
A NONCOMMUTATIVE RING

JUNCHEOL HAN

ABSTRACT. Let R be a ring with identity, X the set of all nonzero,
nonunits of R and G the group of all units of R. First, we investigate
some connected conditions of the zero-divisor graph I'(R) of a noncom-
mutative ring R as follows: (1) if I'(R) has no sources and no sinks, then
I'(R) is connected and diameter of I'(R), denoted by diam(T'(R)) (resp.
girth of I'(R), denoted by g(I'(R))) is equal to or less than 3; (2) if X is a
union of finite number of orbits under the left (resp. right) regular action
on X by G, then I'(R) is connected and diam(I'(R)) (resp. g(I'(R))) is
equal to or less than 3, in addition, if R is local, then there is a vertex of
I'(R) which is adjacent to every other vertices in I'(R); (3) if R is unit-
regular, then I'(R) is connected and diam(I'(R)) (resp. g(I'(R))) is equal
to or less than 3. Next, we investigate the graph automorphisms group
of I'(Matz(Zp)) where Mata(Zy) is the ring of 2 by 2 matrices over the
galois field Z;, (p is any prime).

1. Introduction and basic definitions

The zero-divisor graph of a commutative ring has been studied extensitively
by Akbari, Anderson, Frazier, Lauve, Livinston, and Maimani in [1, 2, 3] since
its concept had been introduced by Beck in [4]. Recently, the zero-divisor
graph of a noncommutative ring (resp. a semigroup) has also been studied by
Redmond and Wu (resp. F. DeMeyer and L. DeMeyer) in [12, 13, 14] (resp.
[6]). The zero-divisor graph is very useful to find the algebraic structures and
properties of rings. In this paper, the zero-divisor graph of a noncommutative
ring is also studied by considering some group actions.

Throughout this paper all rings are assumed to be rings with identity. For
a ring R, let Z;(R) (resp. Z.(R)) be the set of all left (resp. right) zero-
divisors of R, Z(R) = Z;(R) U Z.(R) and T'(R) be the zero-divisor graph of
R consisting of all vertices in Z(R)* = Z(R) \ {0}, the set of all nonzero left
or right zero-divisors of R, and edges * — vy, which means that zy = 0
for z,y € Z(R)*. If there exist vertices zg,...,x, € Z(R)* such that P:
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Tg — T1 — - — Tp_1 — Ty Where x; # x; for all 4,5 = 0,1,...,n
(i # j) for some positive integer n, then P is called a path from zg to z, of
length n. We will denote d(z,y) by the length of the shortest path from z to y,
otherwise, d(x,y) = co. Recall that I'(R) is connected if for all distinct vertices
x,y € Z(R)* there exists a path from z to y. The diameter of I'(R) (denoted
by diam(T'(R))) is defined by the supremum of d(z,y) for all distinct vertices
xz and y in T'(R). In particular, if z = y and d(z,z) = k, then the path is
called the cycle of length k. Usually vertices of a path may be considered to be
distinct, however in a cycle, the initial and the final vertices are the same. If
I'(R) contains a cycle, then the girth of I'(R) (denoted by ¢g(I'(R))) is defined
by the length of the shortest cycle in I'(R), otherwise, g(T'(R)) = oco. In [7,
Proposition 1.3.2], if I'(R) contains a cycle, then 1 + 2diam(T'(R)) > g(TI'(R)).
We say that T'(R) is complete if xy = 0 for any distinct vertices x,y in T'(R).
For a ring R, let X(R) (simply, denoted by X) be the set of all nonzero,
nonunits of R, G(R) (simply, denoted by G) be the group of all units of R
and J(R) (simply, denoted by J) be the Jacobson radical of R. In this paper,
we will consider some group actions on X by G given by (g,z) — gz (resp.
(g,2) — xg~ ') from G x X to X, called the left (resp. right) regular action.
If ¢ : G x X — X is the left (resp. right) regular action, then for each
x € X, we define the orbit of z by op(z) = {#(g9,z) = gz : Vg € G} (resp.
or(x) = {¢(g9,2) = zg~! : Vg € G}). Recall that G is transitive on X (or G
acts transitively on X)) under the regular action on X by G if there is an x € X
with og(z) = X (resp. o.(z) = X) and the left (resp. right) regular action on
X by G is trivial if og(z) = {x} (resp. o.(x) = {z}) for all z € X. In [8], it has
been shown that if X is a union of a finite n number of orbits under the left
regular action on X by G, then 2"*! = 0 for all 2 € J and X is the set of all
nonzero right zero-divisors of R. Similarly, it is also shown that if X is a union
of a finite n number of orbits under the right regular action on X by G, then
2"t =0 for all # € J and X is the set of all nonzero left zero-divisors of R.
Recall that for all x € X the set anng(z) = {y € X : yzr = 0} (resp.
ann,(x) = {z € X : xz = 0}) is called a left (resp. right) annihilator of .
Let annj(z) = anny(z) \ {0} (resp. ann}(z) = ann,(z) \ {0}). Given a zero-
divisor graph T'(R) and a vertex x € Z(R)*, the indegree (resp. outdegree) of x
(denoted by indegree(z) (resp. outdegree(z)) is the number of edges arriving
(resp. leaving) at x. That is, indegree(z) = |annj(z)| (resp. outdegree(zr) =
lann’(z)|). A vertex of indegree 0 (resp. outdegree 0) is called a source (resp.
In Section 2, some connected conditions of the zero-divisor graph of a non-
commutative ring R are investigated as follows: (1) if I'(R) has no sources
and no sinks, then I'(R) is connected and diam(T'(R)) (resp. g(T'(R))) is equal
to or less than 3; (2) if X is a union of finite number of orbits under the left
(resp. right) regular action on X by G, then I'(R) is connected and diam(I'(R))
(resp. g(T'(R))) is equal to or less than 3, in addition, if R is a local ring, then
there exists a vertex of I'(R) which is adjacent to every other vertices in I'(R);
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(4) if R is a unit-regular ring, then I'(R) is connected and diam(I'(R)) (resp.
g(T'(R))) is equal to or less than 3.

In [3], Anderson and Livingston have shown that distinct ring automor-
phisms of a finite ring R which is not a field induce distinct graph automor-
phisms of I'(R) and determined Aut(I'(R)), the graph automorphisms group of
I'(R). In particular, they have computed Aut(I'(Z,)).

In Section 3, when R = Maty(Z,), the ring of 2 by 2 matrices over the Galois
field Z,, (p is any prime), we will show that Aut(I'(R)) is isomorphic to the group
Sp+1, the symmetric group of degree p+1 by investigating that (1) the number
of orbits under the left (resp. right) regular action on X by G is p+ 1; (2) the
number of nonzero nilpotents in R is p> — 1; (3) Aut(I'(R)) # {1}; (4) under
the left (resp. right) regular action on X by G, og(a) N N(p) = o,(a) N N(p) =
o¢(a)Noy(a) for all a € N(p) where N(p) is the set of all nonzero nilpotents in
R.

2. Connected zero-divisor graph under the left (resp. right) regular
action

For a subset S of Z(R)*, we will denote the subgraph of I'( R) with vertices
in S by I's(R).

Proposition 2.1. Let R be a ring. If the left (or right) regular action of G on
X is transitive, then T'x(R) is complete.

Proof. Since the left regular action of G on X is transitive, R is a local ring
and J2 = 0 by [8, Corollary 2.4], and so Z(R)* = X and I'x(R) is complete. If
the right regular action of G on X is transitive, then Z(R)* = X and I'x (R)
is also complete by the similar argument. (Il

Remark 1. In Proposition 2.1, we see that if the left (resp. right) regular action
on X by G is transitive, then 22 = 0, i.e., z is a nilpotent element of nilpotency
2 for all z € X.

Theorem 2.2. Let R be a ring. If T'(R) has no sources and no sinks, then
T'(R) is connected and diam(T'(R)) (resp. g(T'(R))) is equal to or less than 3.

Proof. Let z,y € Z(R)*(xz # y) be arbitrary. Since I'(R) has no sources and
no sinks, i.e., annj(z) # 0 (resp. ann’(x) # @), there exists an element a € X
(resp. b € X) such that xza = 0 (resp. by = 0). If ab = 0, then  — a —
b — y is a path of length 3. If ab # 0, then x — ab — y is a path of length
2. In particular, if we let 2 = y, then g(I'(R)) is equal to or less than 3. O

Example 1 (See Example 1.5, p. 5 in [5]). Let

R- {(% %?)} and take a = (3 ?) R
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Since the left annihilator of a is equal to {0} but the right annihilator of a is
not equal to {0}, a is not a left zero-divisor, and so a is an origin but a is a
right zero-divisor. Since there is no path from a to a?, T'(R) is not connected.

Let
Z 0 20
S = {(Z/2Z Z/2Z)} and take ¢ = (0 T) €s.

Similarly, we note that c is not a right zero-divisor, and so c is a sink but c is a
left zero-divisor. Since there is also no path from c? to ¢, I'(.S) is not connected.

Remark 2. In [3, Theorem 2.3], Anderson and Livingston have shown that for
every commutative ring R, I'(R) is connected and diam(I'(R)) is equal to or
less than 3. But by Example 1 we can note that there is a noncommutative
ring in which its zero-divisor graph is not connected and also note that the
condition [there are no sources and no sinks in the zero-divisor graph of a
noncommutative ring] is not superfluous to be connected.

Theorem 2.3. Let R be a ring such that X is a union of finite number of
orbits under the left and right reqular action on X by G. Then X = Z*(R),
and so T'x (R) is connected and diam(T'x (R)) (resp. g(T'(R))) is equal to or
less than 3.

Proof. Since X is a union of finite number of orbits under the left regular action
on X by G, then Z;(R) C Z}(R) = X by [8, Theorem 2.2]. Similarly, we can
show that if X is a union of finite number of orbits under the right regular action
on X by G, then Z*(R) C Z(R) = X. Thus Z*(R) = Z}(R) = Z}(R) = X,
which implies that T'(R) has no sources and no sinks, and so I'x (R) is connected
and diam(T'x (R))(resp. g(I'(R))) is equal to or less than 3 by Theorem 2.2. O

Corollary 2.4. Let R be a ring such that X # 0. If X is finite, then X =
Z*(R), and so R is finite and (| X|+ 1) > |R|.

Proof. Since X # () and is finite, X is a union of finite number of orbits under
the left and right regular action on X by G, and so we have X = Z*(R) by
the argument given in the proof of Theorem 2.3. Hence R is finite and then
(|X|+1)? > |R| by [11, Theorem IJ.

O

Corollary 2.5. Let R be a finite ring. Then I'x (R) is connected and
diam(T'x (R))
(resp. g(T'(R))) is equal to or less than 3.

Proof. Since R is a finite ring, X is a union of finite number of orbits under the
left and right regular action on X by G. Hence it follows from Theorem 2.3. [

Proposition 2.6. Let n be any positive integer and R be the matrix ring of
all n x n matrices over a division ring D. Then X = Z*(R), and so I'x (R) is
connected and diam(T'x (R)) (resp. g(T'(R))) is equal to or less than 3.
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Proof. Let x € X be arbitrary. Then there exists y € X (resp. z € X) such
that zy = 0 (resp. zz = 0), which implies that ann’(z) # 0 (resp. annj(z) # 0)
for all z € X, i.e., X = Z*(R). Hence I'x(R) is connected and diam(T'(R))
(resp. g(T'(R))) is equal to or less than 3 by Theorem 2.2. O

Lemma 2.7. Let R and S be two rings. If T'(R) and T'(S) have no sources
(resp. mo sinks), then T'(R x S) has no sources (resp. no sinks).

Proof. Let (zr,xs) € Z*(R x S) be arbitrary. Then xp € Z*(R) or zg €
Z*(S). If xg € Z*(R), then there is yg € X(R) such that yrzr = Og
where O is the additivite identity of R since I'(R) has no origins. Thus
(yr,0s)(zRr,zs) = (Ogr,0s) where Og is the additivite identity of S, and so
I'(R % S) has no sources. Similarly, if g € Z*(5), then I'(R x.S) has no sources.
By the similar argument, if I'(R) and I'(S) have no sinks, then I'(R x S) has
no sinks. g

Corollary 2.8. Let Ry, Ro, ..., R, be rings for some positive integer n. If all
D(R;) fori=1,2,...,n have no sources (resp. sinks), then I'(RyxRox---xXR,;,)
has no sources (resp. no sinks).

Proof. Tt follows from the Lemma 2.7 and the mathematical inductiononn. O

Proposition 2.9. Let R be a ring with X = o,(z)Uo,(2?)U---Uo,(z") (resp.
X = op(x) Uop(x?) U --- Uog(x™)) under the right (resp. left) reqular action
on X by G for some positive integer n. If n =1 and |X| > 3, orn =2 and
or(2?) # {2?}, orn =3 and o.(z") # {x'} for some i =2 or 3, orn >4, then
there exists a cycle of length 3 in T'(R).

Proof. Consider the right regular action of G on X. If n = 1, right regular
action is transitive, then T'(R) is complete by Proposition 2.1. Since |X| > 3,
there exists a cycle of length 3 in I'(R). If n = 2 and o,(2%) # {z?}, then
there exists g € G such that x2g # 22. Since X = o(z) U o(2?) and z2g € X,
2%g = hx or ha? for some h € G. Thus 2?2 — z — 229 — 22 is a cycle of
length 3. If n = 3 and o,.(x') # {x'} for some i = 2 or 3, then there exists g € G
such that z'g # 2. Since X = o(z) Uo(z?) Uo(x?) and 2'g € X, 2'g = hx or

hz? or hz3for some h € G. Thus 2® — 22 — 2'g — 23 is a cycle of length

3. Finally, if n > 4, then clearly 2" 2 — "' — 2" — 2" 2 is a cycle
of length 3. Similarly, the result holds under the left regular action of G on
X. O

Remark 3. Let R be a ring. Then for each x € X, annj(z) (resp. ann’(z))
is a union of orbits under the left (resp. right) regular action on X by G.
Indeed, let y € annj(z) be arbitrary. Then we have o,(y) C annj(z), and
SO Uyeann;(x) o¢(y) € annj(z). Clearly, annj(xz) C Uyeann;(z) o¢(y). Hence
annj(z) = Uy&mnZ 0y (y), i.e., annj(x) is a union of orbits under the left regular
action on X by G. By the similar argument, ann}(x) is a union of orbits under
the right regular action on X by G.
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Theorem 2.10. Let R be a ring such that X is a union of finite number of
orbits under the left (resp. right) regular action on X by G. If R is a local
ring, then there is a vertex of T x (R) which is adjacent to every other vertex in

Ty (R).

Proof. Let X be a union of n orbits under the left (resp. right) regular action
on X by G. Since R is a local ring, by [8, Lemma 2.3] there exists € X such
that 2™ # 0 = 2" and X = oy(z) U og(a?) U --- U og(2™). Hence we have
anng(z™) = X, i.e., a — z" for all a € X, which means that 2™ is adjacent to
every other vertex in I'x (R). By the similar argument, we can show that if X is
a union of n orbits under the right regular action on X by G, then there exists
y € X such that y" # 0 = y" ™! and X = 0,(y) Uo.(y?) U---Uo,.(y"). Thus
ann,(y") = X, i.e., y™ — b for all b € X, which means that y™ is adjacent to
every other vertex in I'x (R). O

Remark 4. We note that in the proof of Theorem 2.11 if R is a local ring such
that X = op(x) Uog(z?)U---Uo(a™) (resp. X = o.(z) Uo,(z?)U---Uo.(z"))
with 2 # 0 = 2"*! under the left (resp. right) regular action on X by G,
then the subgraph Iy, (;ny (resp. Ty (zn)) of I'x (R) is complete.

Corollary 2.11. If R is a finite local ring, then there is a vertex of I'x(R)
which is adjacent to every other vertex in I'x (R).

Proof. Since R is a finite ring, X is a union of finite number of orbits under the
left and right regular action on X by G. Hence it follows from Theorem 2.10.
O

Recall that a ring R is called unit-regular if for every x € R there exists a unit
g € R such that zgx = z. In [10], it has been shown that R is a unit-regular
ring if and only if for every orbit oy(z) (x € X) under the left regular action
on X by G, there exists some idempotent e € X such that os(x) = os(e).
Similarly, we can show that R is a unit-regular ring if and only if for every
orbit o,(x) (x € X) under the right regular action of G on X, there exists some
idempotent e € X such that o.(x) = o.(e).

Proposition 2.12. Let R be a unit-reqular ring such that X # 0. ThenT'x(R)
is connected and diam(I'x (R)) (resp. g(I'(R))) is equal to or less than 3.

Proof. Let © € X be arbitrary. Then there exists an idempotent e; € X
such that og(z) = o¢(e1) under the left regular action on X by G by [10,
Lemma 2.3]. By the similar argument, there exists an idempotent e; € X such
that o.(z) = or(e2) under the right regular action on X by G. Hence there
exists g1 € G (resp. g2 € G) such that x = gie; (resp. = = esgs). Since
(1 —e1) =gre1(1 —e1) =0 (resp. (1 —e2)x = (1 — ea)eage = 0, z is neither
source nor sink. Thus I'x (R) is connected and diam(I"x (R)) is equal to or less
than 3 by Theorem 2.2. O



THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS 1653

Proposition 2.13. Let R be a unit-reqular ring. Then T'x(R) is complete if
and only if the set of all idempotents in R is orthogonal and the left regular
action on X by G is trivial, i.e., o(x) = {x} for allx € X.

Proof. (=) Suppose that I'x (R) is complete. Clearly, the set of all idempotents
in R is orthogonal. Assume that the left regular action of G on X is not
trivial. Then there exists an idempotent e € X such that og(e) # {e} by [10,
Lemma 2.3] and so there exists y(# e) € oy(e) such that y = ge for some g € G.
Since I'x (R) is complete and y,e(y # e) € X, 0 = ye = (ge)e = ge = y, a
contradiction. Hence the left regular action on X by G is trivial.

(<) It follows from [10, Lemma 2.3]. O

Corollary 2.14. Let R be a unit-regular ring. Then I'x (R) is complete if and
only if the set of all idempotents in R is orthogonal and the right regular action
on X by G is trivial, i.e., op(x) = {x} for allz € X.

Proof. Tt follows from the similar argument given in the proof of Proposi-
tion 2.13. (]

Lemma 2.15. Let R be a ring. If under the left (resp. right) reqular action on
X by G, y € og(zx) (resp. y € op(x)) for some x € X, then ann,(r) = ann,(y)
(resp. anng(x) = anng(y)).

Proof. If y € o4(z) (resp. y € o.(z)) for some = € X, then there exists g € G
(resp. h € G) such that y = gz (resp. y = zh). It is obvious to show that
ann,(z) = ann,(y) (resp. anng(z) = anng(y)). O

Corollary 2.16. Let R be a unit-reqular ring with X # (. Then for any
x € X there exists an idempotent e € X such that ann,(z) = ann,(e) (resp.
anng(x) = anny(e)).

Proof. Tt follows from the Lemma 2.15 and [10, Lemma 2.3]. O

Proposition 2.17. Let R be a unit-reqular ring such that X # 0 and 2 = 2-1
is a unit in R. Then there exists a cycle of length 4 in T'(R).

Proof. Let e € X be an idempotent. Since 2=2-1€ G, e #1 — e, —e. Thus
e— 1l—e— —e— e—1— eisacycle of length 4 in T'(R). O

3. Automorphism of graph over Mat3(Z)

Recall that a graph automorphism f of a graph T'(R) is a bijection f :
I'(R) — T'x(R) which preserves adjacency. Of course, the set Aut(I'(R)) of
all graph automorphisms of I'(R) forms a group under the usual composition
of functions. In [3], Anderson and Livingston computed Aut(I'(Z,)). In this
section, we compute Aut(I'(Mats(Z,)) where Maty(Z,) is the matrix ring of
all 2 x 2 matrices over Z, for any prime p.
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Lemma 3.1. Let R be a ring and f : Tx(R) — T'x(R) be a graph auto-
morphism of T'x(R). Then for all x € X, f(anng(z)) = anng(f(z)) (resp.

f(ann,(2)) = ann, (f(2))).

Proof. Let y € f(anng(x)) be arbitrary. Then y = f(z) for some 2z € anng(x).
Since zz = 0, 0 = f(zz) = f(2)f(z) = yf(zr) and so y € anny(f(z)). Hence
f(anng(z)) C anng(f(z)). Let z € anng(f(z)) be arbitrary. Then zf(x) =
0. Since f is one to one, there exists z; € X such that f(z;) = z. Then
0 = zf(x) = f(z1)f(x) = f(z12), and so zyz = 0. Since z; € anng(x) and
z = f(z1) € f(anng(z)), anng(f(x)) C f(anng(z)). By the similar argument,
we have f(ann,(z)) = ann,(f(z)). O

In a ring R with identity the left (resp. right) regular action of G on X
is said to be half-transitive if G is transitive on X or if og(z)(resp. or(x)) is
a finite set with |og(x)| > 1 (resp. |oy(x)] > 1) and |os(x)| = |oe(y)| (resp.
lor(2)] = |or(y)|) for all x and y € X. In [9, Theorem 2.4 and Lemma 2.7],
it was shown that if R is a matrix ring of all 2 x 2 matrices over a finite field
F, then G is half-transitive on X by the left (resp. right) regular action and
loe(x)| = |F|?> — 1 (resp. |o.(z)| = |F|*> = 1) for all z € X.

Lemma 3.2. Let p be a prime and R = Maty(Z,). Then for any x € X,
annj (z) = o,(y) (resp. ann}(x)) = o¢(z)) for some y € X (resp. z € X).

Proof. By [9, Lemma 2.7], we have |o¢(z)| = p? — 1 (resp. |o.(x)| = p? — 1) for
all z € X. Since annj(z) (resp. ann}(z)) is a union of a finite number of orbits
under the left (resp. right) regular action of G on X by Remark 3 and since
the left (resp. right) regular action of G on X is half-transitive by [9, Theorem
2.4], lo¢(y)| (resp.|or(2)]) for all y € annj(x) (resp. all z € ann’(z)) is a divisor
of |annj(x)| (resp. |ann}(z)|) and then |annj(x)| = p? — 1 or p> — 1 (resp.
lann’(z)| = p> — 1 or p® — 1) since |ann;(z)| = p? or p* (resp. |ann,(z)| = p?
or p®) and so |annj(z)| = p? — 1 (resp. |ann}(z) = p? — 1). Hence we have the
result. O

Lemma 3.3. Let p be a prime and R = Maty(Z,). Then the number of orbits
under the left (resp. right) regular action on X by G is p+ 1.

Proof. Let p be the number of orbits under the left (resp. right) regular action
on X by G. Note that |G| = (p? — 1)(p? — p). Thus |X| = |R| - |G| -1 =
pt—(p*—1)(p*>—p)—1 = (p+1)(p?—1). Since the cardinality of any orbit under
the left (resp. right) regular action on X by G is p? — 1 by [9, Lemma 2.7],
p=I1Xl/(p*-1) =p+1. O

Lemma 3.4. Let p be a prime, R = Maty(Z,) and let N(p) be the set of
nonzero nilpotents in R. Then |N(p)| = p* — 1.

Proof. Let

aa  ab

M) ={ (g o) € VO abarol
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and

N ={ (5 o) € Nlabazo}.

—ab

We will show that Ny (p) = Na(p). Let
a —aa

(b —ab) € Na(p)

be arbitrary. Since A2 =0 and a,b # 0, we have

9
A= (O;,b “ b) € Na(p),

—ab

ab  —a?b

and also (1/a?) ( b ab) € Na(p).
Since
oy [ab —a?b\ [ (=1/a)(—b) =b
1) (3 7)) = (Ul yjmn) M0
we have No(p) C Ni(p). By the similar argument, we can have Ni(p) C Na(p).
Let A be any nonzero nilpotent in R. Then

a b a aa
A= (aa ab> or (a ab)
for some o € Z,.

Note that since A is a nonzero nilpotent in R, b # 0. Consider the following

cases:
Case 1. a =0;
Since
s o (0D 0 0

A _O’A_<O o)y o

for all nonzero b € Zj,.
Case 2. a #0;

In this case, a # 0. Hence we have Ni(p) = Na(p) by the above argument.

. 2 o —ab b
Since A = 0, we have A = (—aQb ab>'

Consequently, we have

o= ml+ |{ (o) e vw: 20|

+{( 0) evoruzol

=(p-Dp-D+20p—-1)=p*—1.
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Example 2. Let R = Matg(Zz). Then X = {$1,$2,$3,$4,$5,56‘6,1]7,.’178,.%‘9},

where

/00 /00 /00 (01

1= 1)>"7\1 o)™~ \1 1) o o)
/01 (10 /(10 (11 (11
=\ 1)°"=\o o)~ \1 o)™ o o) \1 1)

Note that {zg,24,29} is the set of nonzero nilpotents in R. Under the
left (resp. right) regular action on X by G, there are three orbits op(zs) =
{z2, 26,27}, 0p(xq4) = {x1,24,25}, 0e(xg) = {x3, 28,29} (vesp. op(z2) =
{z1, 22,23}, 0p(24) = {24, x5, 25}, 0r(x9) = {25, 27,29}).

We can compute Aut(T'(R))= {1, f,g,90 f,fog,g0 fog}, where

f_ 1 X9 T3 X4 Ty Xg Ty Xg T9
r3 X9 T1 X9 Ty X5 T8 Xg T4 ’

T T3 Ty Tz Tg Tp T .
= ( LR 3 4 > 6 7 8 x9> are permutations.
g T4 g T2 X1 T3 X7 XI5 T9
Observe that Aut(I'(R)) is isomorphic to Ss3, the symmetric group of de-

gree 3.
Theorem 3.5. Let p be a prime and R = Maty(Z,). Then Aut(T'(R)) # {1}.

Proof. If p = 2, then Aut(T'(R)) # {1} by Example 2. Suppose that p > 3.
Let N(p) be the set of nonzero nilpotents in R. Since the number orbits is
p+ 1 by Lemma 3.3 under the left (resp. right) regular action on X by G and
|N(p)| = p? — 1 by Lemma 3.4, there exists z € X such that |o,(z) N N(p)| > 2.
Let z1,29 € oi(x) N N(p) (1 # x2). Since z; and z, are nilpotents, we
have annj(z1) = og(z1) = o¢(z2) = annj(z2) by Lemma 3.2. We have also
ann’(zy) = annf(x2). Indeed, if @ € ann’(x1), then 0 = z1a = grga = 0
for some g € G since x3 € op(x1), which implies that a € ann}(x2), and so
ann’(z1) C ann’(z2). By the similar argument, we have ann’(z2) C ann’(z1).
Also we have ann(z1) = oy(z1) = or(z2) = ann’(zz) by Lemma 3.2. Let
[ = (x1,22) be a transposition in S| x|, the symmetric group of degree |X]|.
Since 1 # 2, f # 1. We will show that f € Aut(T'(R)). Consider 1y = 0
for some y € X. If y = xy, then f(z1)f(y) = zaw2 = 0. If y = x4, then
flx1) f(y) = xox1 = grx121 = 0 for some g; € G since x5 € oy(x1). Uy #
x1,x9, then f(z1)f(y) = zoy = g121y = 0 for some g1 € G since x5 € oy(x1).
Also consider zz; = 0 for some z € X. If z = a1, then f(z)f(z1) = 222 = 0.
If z = a9, then f(2)f(x1) = z122 = hjzaz9 = 0 for some hy € G since
x1 € o(xa). If 2 # 21,29, then f(2)f(x1) = zza = zz1he = 0 for some hy € G
since x2 € o,(x1). Consequently, f € Aut(I'(R)), and so Aut(I'(R)) # {1}. O

Remark 5. Let p be a prime, R = Maty(Z,) and N(p) be the set of nonzero
nilpotents in R. We can choose that f(# 1) € Aut(I'(R)) by Theorem 3.5.
Then we note that (1) f(a) € N(p) for all a € N(p); (2) since f is bijective
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and the left (resp. right) regular action on X by G is half-transitive with
loe(z)| = p+1 (resp. |or(z)| =p+1) forall x € X, |o;(x) NN (p)| =p—1 (resp.
l0r(2) N (p)| = p—1) and f(op(x)) = 0u(f(x)) (resp. f(or(x)) = 0,(f(x))) by
Lemma 3.1 and Lemma 3.2; (3) every orbit under the left (resp. right) regular
action on X by G is og(z) (resp. or(z)) for some nilpotent x € X.

Lemma 3.6. Let p be a prime, R = Mato(Z,) and N(p) be the set of all
nonzero nilpotents in R. Then under the left (resp. right) regular action on X
by G, o¢(a) N N(p) = o.(a) N N(p) = o¢(a) No.(a) for all a € N(p).

Proof. Let b € o4(a) N N(p) be arbitrary. Since og(a) = 0g(b), ba = ab = 0, and
thus b € ann’(a) = o,(a). Hence os(a)NN(p) C o,(a)NN(p) and og(a)NN(p) C
o¢(a) Noy(a). By the similar argument, we have o.(a) N N(p) C og(a) N N(p)
and o,(a) N N(p) C og(a) No.(a). Therefore, op(a) N N(p) = o.(a) N N(p) C
oe(a) Nor(a). By Remark 4, we already knew that |o.(a) N N(p)| = |og(a) N
N(p)| = p— 1. Next, we will show that os(a) N N(p) = o¢(a) No,.(a). Let
S = anng(a) Nann,(a). Then S = (og(a) No,(a)) U{0}. Since S is an additive
subgroup of anng(a) and |anng(a)| = p?, |S| = 1 or p. Since |oy(a) N o,(a)| >
loe(a) N N(p)l =p—12>1, S| = |oe(a) Nop(a)] + 1 > 2, and thus |S| = p.
Since |og(a) Noq(a)] = |S] =1 =p—1=oe(a) N N(p)| = |o-(a) N N(p)| and
0¢(a)NN(p), 0,(a)NN(p) C og(a)Noy(a), we have op(a)NN(p) = 0.(a)NN(p) =
oe(a) Nor(a). O

Remark 6. Let p be a prime, R = Maty(Z,) and N(p) be the set of nonzero
nilpotents in R. We can choose a1, ..., ap+1 € N(p) such that X = oy(ai)U---U
oe(apt1) (resp. X = op(a1)U---Uop(apt1)). Note that foreachi =1,...,p+1,
oe(a;) = 0g(a;) N X = og(a;)Nor(ar)U---Uor(aps1)] = [0e(a;) Nop(a1)]U---U
fo0(as) N or(ap)-

Lemma 3.7. Let p be a prime, R = Mats(Z,,) and N(p) be the set of nonzero
nilpotents in R. Consider X = oy(a1) U --- Uog(apt1) (resp. X = or(a1) U
---Uoy(apt1)) for some aq,...,apy1 € N(p) as mentioned in Remark 6. Then
under the left (resp. right) reqular action on X by G, |o¢(a;) Nor(aj)| =p—1
for all aj,a; € N(p) (i,j=1,...,p+1).

Proof. Let A;; = anng(a;) N ann,(a;) for all 4,7 = 1,...,p + 1. Note that
Aij = [0eu(a;)Noy(a;)]U{0}. If i = j, then |o;(a;)No,(a;j)| = p—1 as given in the
proof of Lemma 3.6. Suppose that 7 # j. Since A;; ia an additive subgroup of
anny(a;) with |anng(a;)| = p?, |Ai;| = 1 or p. Hence |og(a;)Noy(a;)| = 0 or p—1.
Assume that |A;;| = 1 (equivalently, |o¢(a;) Nor(a;)| = 0) for some 4, j. Then
|Ajie| > |Aqi| for some k. Since |A;;| = p (equivalently, |o¢(a;) Noy(a;)] =p—1)
as given in the proof of Lemma 3.6, |4;z| > p, a contradiction. Therefore,
|A;;| = p, and so |o¢(a;) Nop(aj)|=p—1foralli,j=1,...,p+1. O

Lemma 3.8. Let p be a prime, R = Mats(Z,,) and N(p) be the set of nonzero
nilpotents in R. Consider X = og(a1) U --- Uog(apt1) (resp. X = or(a1) U
- Uop(aps1)) for some aq,...,ap41 € N(p) as mentioned in Remark 5. If
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s; = (1,7) is a transposition in Spy1, the symmetric group of degree p+1, and
fs; : T(R) — I['(R) is a bijective map such that fs (oe(a;)) = os(as,y), then
[s; is a graph automorphism in I'(R).

Proof. Note that since f; : I'(R) — T'(R) is a bijective map such that
ij (Of(ai)) = Oﬁ(asj(i))a ij (Ol(ai) N Or(ak)) = Of(asj(i)) N Or(asj(k)) for all
iLWwk=1,...,p+ 1.

Let xz,y € X be arbitrary. Consider the following cases.

Case 1. z,y € o¢(ar) Nop(ay).
Since af = 0, zy = yx = 0. Note that f, (z), fs,(y) € os(a;) = or(a;), and so
ij (‘T)fsj- (y) = ij (zy) = ij (0) = 0 and also ij (y)ij (z) =0.

Case 2. z,y € o¢(a;) Noy(ay).
By the similar argument given to the case 1, zy = yx = 0 and also f, (x)fs, (y)
= fs,;(W)fs, () =0.

Case 3. z € og(a1) Noy(a1),y € oe(ar) Nor(aj) (§ #1).
Then yz = 0. Note that f,,(z) € oe(a;) No.(a;), fs;(y) € or(aj) Nop(a1), and
so fs;(y)fs;(x) = 0. Assume that 2y = 0. Then aya; = 0, which implies that
o¢(a1) = og(a;), a contradiction. Hence xy # 0. Assume that f,,(z)fs, (y) = 0.
Since f,(x) € oe(aj) Nop(aj), fs,(y) € oe(a;) Nop(ar), aja; = 0, which implies
that os(a1) = o¢(a;), also a contradiction. Hence we have f () fs, (y) # 0.

Case 4. = € o¢(aj) Noy(aj),y € or(ar) Noy(ar).
By the similar argument given to the case 3, zy = 0 and also f, (z)fs, (y) = 0;
yx # 0 and f; (y) fs, () # 0.

Case 5. z € og(a1) Noy(a;),y € oe(ar) Nor(ar), (i, k # 1,7).
Then z = g1a1 = a;h1,y = goa1 = aphsy for some g1, gs, h1,he € G. If zy = 0,
then ajar = 0, which implies that o¢(a1) = o¢(ar), a contradiction. Hence we
have zy # 0. Since f(z) € os(a;) Noy(a;), f(y) € oe(a;) Nor(ar), we also have
f(z)f(y) # 0. Similarly, we have yx # 0 and f(y)f(z) # 0.

Case 6. x € oy(a;) Nop(ar),y € oe(ar) Nop(ar), (i, k,r,s £ 1,7).
If xy = 0, then a;a; = 0. Since f(z) € og(a;) Nor(ar), f(y) € oe(ar) Nor(as),
f(@)f(y) = 0. Similarly we have that if yz =0, f(y)f(z) =0.

Consequently, f,; is a graph automorphism in I'(R). O

Theorem 3.9. Let p be a prime and let R = Matg(Z,). Then Aut(T'(R)) ~
Sp+1 where S,11 is the symmetric group of degree p+ 1.

Proof. Let N(p) be the set of nonzero nilpotents in R. We can choose ay,
.., apr1 € N(p) such that X = og(a1) U---Uog(aps1). Define o : Sppq —
Aut(I'(R)) by o(s) = fs for all s € Sy,1 where fs(0r(a;)) = oe(asy) for all
i =1,...,p+ 1. Then o is well-defined and onto. Indeed, by Lemma 3.1
and Lemma 3.2, we have that if f € Aut(T'(R)) is arbitrary, then for all
i=1,...,p+1, f(or(a;)) = 0e(as@)) for some s € Spy1. Since S,y1 is gener-
ated by the p transpositions sy = (1,2),...,s, = (1,p+1), and fs,..., fs, €
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Aut(T'(R)) by Lemma 3.8, Aut(T'(R)) is generated by the p graph automor-
phisms fg,,..., fs, € Aut(I'(R)) where fs (o¢(a;)) = oe(as, () for all i =
l,...,p+1and j = 1,...,p. Thus [Sp+1| = [Aut(T'(R))|, which implies
that o is a bijective map. Also ¢ is a group homomorphism by observing
that for all s;,s; € Spy1 (4,5 = 1,...,p) and all op(ar) (kK = 1,...,p+ 1),
(fs; o fs;)(0e(ar)) = fs;s;(0e(ar)). Therefore, Aut(I'(R)) ~ Spi1. O
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