ON A TOPOLOGICAL DIVISOR OF ZERO IN THE CALKIN ALGEBRA

HONG YOUL LEE

ABSTRACT. We give a simple proof of the statement that if T is a bounded linear operator on a complex Hilbert space then T is Fredholm if and only if $\pi(T)$ is not a TDZ, where $\pi(\cdot)$ is the Calkin homomorphism.

An element x of a Banach algebra A is called a left [right] divisor of zero if there exists a nonzero element $y \in A$ such that xy = 0 [yx = 0]and is called a left [right] topological divisor of zero (briefly, TDZ) if there exists a sequence $y_n \in A$ with $||y_n|| = 1$ for all $n \in \mathbb{N}$ such that $xy_n \to 0$ $[y_n x \to 0]$. Let \mathcal{H} be a complex Hilbert space, let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} , and let $\mathcal{K}(\mathcal{H})$ be the ideal of all compact operators on \mathcal{H} . The algebra $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is called the Calkin algebra and let π denote the canonical homomorphism of $\mathcal{B}(\mathcal{H})$ onto $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$, which is often called the Calkin homomorphism. An operator $T \in \mathcal{B}(\mathcal{H})$ is called *left Fredholm* if it has closed range with finite dimensional null space and right Fredholm if it has closed range with its range of finite co-dimension. If T is both left and right Fredholm we call it Fredholm. The Atkinson's theorem says that T is Fredholm if and only if $\pi(T)$ is invertible. In [1, Theorem 8.7.3] it was shown, using the argument of enlargements, that T is Fredholm if and only if $\pi(T)$ is not a divisor of zero. In this paper we give a simple proof of the statement that T is Fredholm if and only if $\pi(T)$ is not a TDZ.

We begin with:

LEMMA 1. Let $T \in \mathcal{B}(\mathcal{H})$. If $\pi(T)$ is not a left divisor of zero then $\dim T^{-1}(0) < \infty$.

Received December 5, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A53.

Key words and phrases: Fredholm operators, topological divisor of zeros.

Proof. If we write $T = \begin{pmatrix} 0 & A \\ 0 & B \end{pmatrix}$ with respect to the decomposition $T^{-1}(0) \oplus T^{-1}(0)^{\perp}$, put $S = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$: then TS = 0, but $\pi(S) \neq 0$ if $T^{-1}(0)$ is infinite dimensional.

THEOREM 2. Let $T \in \mathcal{B}(\mathcal{H})$. If $\pi(T)$ is not a left TDZ, then T has closed range.

Proof. Suppose that ran (T) is not closed. Let T = U|T| be the polar decomposition of T and let E be the spectral measure on the Borel subsets of $\sigma(|T|)$ such that $|T| = \int z \, dE(z)$. Since $\operatorname{ran}(T)$ is not closed, we have that $\inf(\sigma(|T|)\setminus\{0\}) = 0$. Thus we can find a strictly decreasing sequence $\{\alpha_n\}$ of elements in $\sigma(|T|)\setminus\{0\}$ such that $\alpha_n \to 0$. Since the α_n are distinct there exists a sequence $\{U_n\}$ of mutually distinct open intervals such that $\alpha_n \in U_n$ for each $n \in \mathbb{N}$. Define

$$F_n := U_n \cap \sigma(|T|).$$

Then the F_n are non-empty relatively open subsets of $\sigma(|T|)$. Thus $E(F_n)\mathcal{H} \neq \{0\}$ for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, choose a unit vector x_n in $E(F_n)\mathcal{H}$. Since $\sigma(|T||_{E(F_n)\mathcal{H}}) \subset \operatorname{cl} F_n$ for each $n \in \mathbb{N}$, it follows that $|T||_{E(F_n)\mathcal{H}}$ is invertible for every $n \in \mathbb{N}$. Define S_n on $E(F_n)\mathcal{H}$ by

$$S_n z_n = \alpha_{n-1} (|T||_{E(F_n)\mathcal{H}})^{-1} P_n z_n \quad \text{for } z_n \in E(F_n)\mathcal{H},$$

where $\alpha_0 := 1$ and P_n is the orthogonal projection of $E(F_n)\mathcal{H}$ onto $\bigvee \{x_n\}$. Then $||S_n|| \geq 1$ for all $n \in \mathbb{N}$. Define the operator A_n on \mathcal{H} by

$$A_n := \left(\bigoplus_{k=1}^n S_k\right) \oplus \left(\bigoplus_{k=n+1}^\infty I|_{E(F_k)\mathcal{H}}\right).$$

Since $\bigoplus_{k=n=1}^{\infty} I|_{E(F_k)\mathcal{H}}$ is not compact, A_n is not compact. Moreover $||\pi(A_n)|| \geq 1$ for all $n \in \mathbb{N}$. But

$$|T|A_n = \left(\bigoplus_{k=1}^n \alpha_{n-1} I|_{\vee\{x_n\}}\right) \oplus \left(\bigoplus_{k=n+1}^\infty |T|_k\right),$$

where $\alpha_0 := 1$ and $|T|_k := |T|_{E(F_k)\mathcal{H}}$. Put $K := \bigoplus_{k=1}^{\infty} \alpha_{n-1} I|_{\vee \{x_n\}}$.

Then K is compact and

$$|||T|A_n - K|| = ||\bigoplus_{k=n+1}^{\infty} |T|_k + \bigoplus_{k=n+1}^{\infty} \alpha_{n-1}I|_{\vee\{x_n\}}||$$

$$\leq ||\bigoplus_{k=n+1}^{\infty} |T|_k|| + ||\bigoplus_{k=n+1}^{\infty} \alpha_{n-1}I|_{\vee\{x_n\}}||$$

$$\leq 2\alpha_n \to 0 \quad \text{as } n \to \infty.$$

Therefore

$$||TA_n - UK|| = ||U(|T|A_n - K)|| \le |||T|A_n - K|| \to 0$$
 as $n \to \infty$,

which implies that $\pi(T)$ is a left TDZ, a contradiction.

COROLLARY 3. Let $T \in \mathcal{B}(\mathcal{H})$. Then

(3.1)
$$\pi(T)$$
 is not a left TDZ \iff T is left Fredholm.

Hence, in particular,

(3.2)
$$\pi(T)$$
 is not a $TDZ \iff T$ is Fredholm.

Proof. The forward implication of (3.1) follows from Lemma 1 and Theorem 2, and the backward implication comes from the Atkinson's theorem. The implication (3.2) follows at once from (3.1) together with the dual argument.

References

[1] R. E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.

Department of Mathematics Education, Woosuk University, Jeonbuk 565-701, Korea

E-mail: hylee@woosuk.ac.kr