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SQUAREFREE ZERO-DIVISOR GRAPHS OF

STANLEY-REISNER RINGS

Ashkan Nikseresht

Abstract. Let ∆ be a simplicial complex, I∆ its Stanley-Reisner ideal

and K[∆] its Stanley-Reisner ring over a field K. Assume that Γ(R)
denotes the zero-divisor graph of a commutative ring R. Here, first we

present a condition on two reduced Noetherian rings R and R′, equivalent
to Γ(R) ∼= Γ(R′). In particular, we show that Γ(K[∆]) ∼= Γ(K′[∆′]) if

and only if |Ass(I∆)| = |Ass(I∆′ )| and either |K|, |K′| ≤ ℵ0 or |K| =

|K′|. This shows that Γ(K[∆]) contains little information about K[∆].
Then, we define the squarefree zero-divisor graph of K[∆], denoted by

Γsf(K[∆]), and prove that Γsf(K[∆]) ∼= Γsf(K[∆′]) if and only if K[∆] ∼=
K[∆′]. Moreover, we show how to find dimK[∆] and |Ass(K[∆])| from
Γsf(K[∆]).

1. Introduction

In this paper all rings are commutative with identity and K is a field. Let
S = K[x1, . . . , xn] be the polynomial ring in n indeterminates over K. By a
squarefree monomial ideal of S we mean an ideal generated by a set of squarefree
monomials of S. In the last few decades, the study of squarefree monomial
ideals has got a large attention (for example, see [3, 8, 10]). This is because if
we know algebraic properties of squarefree monomial ideals well, then we can
understand many algebraic properties of much larger classes of ideals such as
monomial and graded ideals (see [7]).

Squarefree monomial ideals have a combinatorial nature and many have tried
to derive algebraic properties of a squarefree monomial ideal I, from different
combinatorial structures associated to I, such as graphs, hypergraphs, clutters,
simplicial complexes, posets, etc (see, for instance, [6, 9, 11] and Part III of
[7]). Here we use the concept of simplicial complexes. Recall that a simplicial
complex ∆ on [n] = {1, . . . , n} is a family of subsets of [n], called faces of ∆,
with the following properties:

(i) if A ∈ ∆ and B ⊆ A, then B ∈ ∆;
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(ii) {i} ∈ ∆ for all i ∈ [n].

For every subset F ⊆ [n] we set xF =
∏
i∈F xi. Then the ideal I∆ = 〈XF |F ⊆

[n], F /∈ ∆〉 of S is called the Stanley-Reisner ideal of ∆ and the ring K[∆] =
S/I∆ is called the Stanley-Reisner ring of ∆ over K. For more on (squarefree)
monomial ideals, simplicial complexes and their interrelations, the reader is
referred to [7].

Now assume that R is a commutative ring with identity. Recently many
graphs have been associated to R and many researchers have studied the re-
lation between graph theoretic properties of these graphs and algebraic prop-
erties of R. One of the first and most studied graphs associated to R is the
zero-divisor graph of R defined in [2]. Suppose that Z(R) denotes the set of
zero-divisors of R and Z∗(R) = Z(R) \ {0}. The zero-divisor graph of R is the
graph Γ(R) on the vertex set V(Γ(R)) = Z∗(R), in which, vertices x and y are
adjacent if and only if xy = 0.

It is natural to ask how much the theory of zero-divisor graphs can help us to
study squarefree monomial ideals, that is, what information about R = K[∆]
can be derived from Γ(R), where ∆ is a simplicial complex. As every Stanley-
Reisner ring is a reduced ring (a ring without nonzero nilpotent elements), here
in Section 2, we first study the structure of Γ(R) when R is a reduced ring and
present an algebraic condition on Noetherian reduced rings R and S equivalent
to Γ(R) ∼= Γ(S). As a corollary, it is shown that Γ(K[∆]) ∼= Γ(K ′[∆′]) if and
only if |Ass(K[∆])| = |Ass(K ′[∆′])| and either |K| = |K ′| or |K|, |K ′| ≤ ℵ0,
where ℵ0 is the smallest infinite cardinal.

Thus Γ(R) provides us with little information about R, when R is a Stanley-
Reisner ring. To remedy this weakness, in Section 3, we define squarefree
zero-divisor graph of a Stanley-Reisner ring R, denoted Γsf(R), and prove that
Γsf(R) ∼= Γsf(S) if and only if S ∼= R, when R and S are Stanley-Reisner rings
over a fixed field K. This shows that all algebraic properties of a Stanley-
Reisner ring which do not depend on the base field can be recovered from
its squarefree zero-divisor graph. In particular, we show how Krull dimension
of R = K[∆] and |Ass(R)| can be found from Γsf(R). Moreover, we study
connectedness and the diameter of Γsf(R).

2. Zero-divisor graphs of Stanley-Reisner rings

To see what kind of information can be derived from the zero-divisor graph of
a Stanley-Reisner ring and since every Stanley-Reisner ring is reduced, we first
study the structure of Γ(R) for a reduced ring R. Recall that an independent
set of a graph is a set of vertices which are mutually nonadjacent.

Proposition 2.1. Suppose that R is a reduced ring and Min(R) = {Pλ |λ ∈
Λ}. For each ∅ 6= I ⊆ Λ set

PI =
⋂
λ∈I

Pλ \
⋃

λ∈(Λ\I)

Pλ.
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Then {PI | ∅ 6= I 6= Λ, PI 6= ∅} is a partition of V(Γ(R)), each such PI is an
independent set of Γ(R) and for each x ∈ PI and y ∈ PJ , x and y are adjacent
if and only if I ∪ J = Λ.

Proof. Suppose that x ∈ V(Γ(R)) = Z∗(R) and 0 6= y ∈ Ann(x). If x is not
contained in any of the Pλ’s, then as 0 = xy ∈ Pλ, we get y ∈ ∩λ∈ΛPλ = the
nilradical of R =0, a contradiction. Thus for some ∅ 6= I ⊆ Λ, we have x ∈ PI .
As x 6= 0, I 6= Λ. It is clear that PI ∩ PJ = ∅ for I 6= J ⊆ Λ and hence
{PI | ∅ 6= I 6= Λ, PI 6= ∅} is a partition of V(Γ(R)).

Now note that as 0 = xy ∈ Pλ, y should lie in all Pλ with λ /∈ I. Conversely
if z ∈ ∩λ∈Λ\IPλ, then xz ∈ PΛ = 0. Thus if z ∈ PJ , then x and z are adjacent
if and only if Λ \ I ⊆ J , if and only if I ∪ J = Λ. In particular, if x, z ∈ PI ,
then x and z are not adjacent, which concludes the proof. �

In what follows, if x is a vertex of a (fixed) graph, we denote the neighbor-
hood of x in that graph by N(x).

Theorem 2.2. Suppose that R is a reduced ring with finitely many minimal
primes P1, . . . , Pn (for example, if R is a Noetherian reduced ring). Also as-
sume that S is a reduced ring. Then Γ(R) ∼= Γ(S) if and only if Min(S) =
{Q1, . . . , Qn} and for a permutation σ on [n] and every nonempty proper sub-
set I of [n], we have

|PI | = |Qσ(I)|,
where PI = ∩i∈IPi \ ∪i∈[n]\IPi and QJ = ∩i∈IQi \ ∪i∈[n]\IQi.

Proof. (⇐): A direct consequence of Proposition 2.1.
(⇒): Assume that φ : Γ(R) → Γ(S) is a graph isomorphism. Also let

Min(S) = {Qλ |λ ∈ Λ} and QJ be as above (with [n] replaced by Λ). First
note that if ∅ 6= I ( [n], then by the prime avoidance theorem PI 6= ∅. If
x ∈ PI and φ(x) ∈ QJ , then it follows from Proposition 2.1 that PI = {y ∈
Z∗(R) |N(y) = N(x)} and QJ = {y ∈ Z∗(S) |N(y) = N(φ(x))}. Since φ is
an isomorphism of graphs, we deduce that φ(PI) = QJ . Similarly for each
nonempty QJ , there is an I ( [n] such that φ−1(QJ) = PI . Therefore the

set Q̃ = {QJ | ∅ 6= J ( Λ, QJ 6= ∅} is finite. But for each λ ∈ Λ, we have

Qλ = ∪λ∈JQJ , that is, each minimal prime of S is a union of sets in Q̃. Since

|Q̃| <∞, it follows that the number of minimal primes of S is finite and because
of the one-to-one correspondence φ should be n, so we assume Λ = [n].

Consider the graph with vertices PI , in which PI is adjacent to PI′ when
I∪I ′ = [n] and consider the similar graph onQJ ’s. Since for each I, φ(PI) = QJ
for some J , φ can be considered as an isomorphism between these two graphs on
PI ’s and QJ ’s. In the rest of the proof we work in these two graphs. It can be
readily checked that if φ(PI) = QJ , then 2|I|−1 = |N(PI)| = |N(QJ)| = 2|J|−1,
hence |I| = |J |. In particular, it follows that for a permutation σ on [n],
φ(P{i}) = Q{σ(i)}. We show that this σ satisfies the required condition. For
simplicity we assume σ(i) = i, so that we must show |PI | = |QI | for each
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nonempty I ( [n]. For this, we prove by induction on |I| that φ(PI) = QI and
φ(P[n]\I) = Q[n]\I for each nonempty I ( [n].

If |I| = 1, then by assumption φ(PI) = QI . Also the only vertex adjacent to
PI is P[n]\I , therefore, φ(P[n]\I) should be the only vertex adjacent to φ(PI) =
QI which is Q[n]\I . This sets the basis of the induction. Now assume |I| > 1
and let φ(PI) = QJ . Note that for each i ∈ I, P[n]\(I\{i}) ∈ N(PI) and by
the induction hypothesis, φ(P[n]\(I\{i})) = Q[n]\(I\{i}). Hence Q[n]\(I\{i}) ∈
N(QJ), that is [n] \J ⊆ [n] \ (I \ {i}) or equivalently, I \ {i} ⊆ J . Since i ∈ I is
arbitrary and |I| > 1, we see that I ⊆ J . Because, as proved above, |I| = |J |,
we must have I = J . Now φ(P[n]\I) = Q[n]\I follows from the facts that P[n]\I
(resp. Q[n]\I) is the only vertex with index of size n− |I| adjacent to PI (resp.
QI) and that φ preserves adjacency and also the size of the index sets. �

Theorem 2.2 generalizes the following result which was first proved in [1].

Corollary 2.3 ([1, Theorem 1.4]). Assume that R and S are reduced finite
rings. Then Γ(R) ∼= Γ(S) if and only if R ∼= S.

Proof. Note that R and S are finite direct products of finite fields, say R ∼=∏n
i=1Ki and S ∼=

∏m
i=1 Fi. So minimal primes of R and S are Pj =

∏n
i 6=j=1Ki

and Qj =
∏m
i 6=j=1 Fi, respectively. Now the result follows from Theorem 2.2.

�

As another corollary of Theorem 2.2, we can now answer the question which
was the starting point of this research: “when zero-divisor graphs of two
Stanley-Reisner rings are isomorphic?” Recall that the maximal faces of a
simplicial complex are called its facets. By [7, Lemma 1.5.4], the number of
facets of a simplicial complex ∆ equals |Ass(K[∆])| = |Min(K[∆])|.

Corollary 2.4. Suppose that R = K[∆] and S = K ′[∆′] where K,K ′ are
fields and ∆,∆′ are simplicial complexes. Then Γ(R) ∼= Γ(S) if and only if the
following two conditions hold:

(i) |Ass(R)| = |Ass(S)| (or equivalently, ∆ and ∆′ have the same number
of facets);

(ii) either |K| = |K ′| or |K|, |K ′| ≤ ℵ0, where ℵ0 denotes the smallest
infinite cardinal.

Proof. Let {Pi}ni=1 be the minimal primes of I∆ in K[x1, . . . , xt] and PI be as
defined in Theorem 2.2. According to [7, Lemma 1.5.4], each Pi is generated by
a set of variables and hence for each ∅ 6= I ( [n], qI = ∩i∈IPi is a squarefree
monomial ideal. By [7, Proposition 2.2.5(a)], the set of monomials in qI \ I∆
is a K-basis for q̄I , where ·̄ denotes image in R. Since we have a countable
number of monomials, we see that |P̄I | ≤ |q̄I | ≤ |K|(ℵ0), where by |K|(ℵ0) we
mean the cardinality of a K-vector space with dimension ℵ0. On the other
hand, if u = xα1

1 · · ·x
αt
t ∈ PI with for example α1 6= 0, then x̄j1ū ∈ P̄I for each

j ∈ N. Indeed since each Pi is a monomial ideal, every K-linear combination
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of {x̄j1ū | j ∈ N} is in P̄I . Therefore, |P̄I | = |K|(ℵ0). Noting that |K|(ℵ0) = ℵ0

for |K| ≤ ℵ0 and |K|(ℵ0) = |K| for |K| ≥ ℵ0, the result follows from Theorem
2.2. �

In particular, in the case that K = K ′, the above result asserts that Γ(K[∆])
∼= Γ(K[∆′]) if and only if ∆ and ∆′ have the same number of facets. In other
words, the only information which can be read off the zero-divisor graph of
K[∆] is the number of facets of ∆. Thus this infinite graph contains little
information about ∆ and its Stanley-Reisner ring. In the next section, we
present a finite graph, based on the zero-divisor structure of K[∆], from which
we can reconstruct ∆ completely.

3. Squarefree zero-divisor graphs of Stanley-Reisner rings

Since Stanley-Reisner rings are defined by squarefree monomial ideals, to
get the “most important” information about such rings, we should look at the
structure of squarefree monomials in these rings. This is our idea in defining
the squarefree zero-divisor graph of Stanley-Reisner rings.

Definition 3.1. Suppose that ∆ is a simplicial complex on [n] and S =
K[x1, . . . , xn]. Let V be the set of image in R = K[∆] of all squarefree mono-
mials of S which are not in I∆. By the squarefree zero-divisor graph of R (or
∆), we mean the graph on vertex set V , in which, two vertices u and v are
adjacent if and only if uv = 0. We denote this graph by Γsf(R) or Γsf(∆).

The squarefree zero-divisor graph of ∆ could directly be described using
∆: its vertices correspond to nonempty faces of ∆ and two faces A,B ∈ ∆
are adjacent if and only if A ∪ B /∈ ∆. Recall that if F1, . . . , Ft ⊆ [n], then
∆ = 〈F1, . . . , Ft〉 means that ∆ is the simplicial complex with facets F1, . . . , Ft.

Example 3.2. Suppose that n = 3 and ∆ = 〈{1, 2}, {1, 3}, {2, 3}〉. Then
R = K[∆] = K[x1, x2, x3]/〈x1x2x3〉 and Γ(R) is the graph in Figure 1(a)
(note that, for simplicity, we denote the image of xi in R again by xi). If
∆ = 〈{1, 3}, {2, 3}〉, then K[∆] = K[x1, x2, x3]/〈x1x2〉 and Γsf(∆) is Figure
1(b). Note that in this case Γsf(R) has an isolated vertex which corresponds
to the non-zero-divisor vertex x1.

x1

x2x3

x1x3
x1x2

x3 x2

(a)

x3

x2

x1 x1x3

x2x3

(b)

Figure 1. Γsf(R) for (a) R = K[x1,x2,x3]
〈x1x2x3〉 , (b) R = K[x1,x2,x3]

〈x1x2〉
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Clearly, Γsf(K[∆]) is independent of K and has no information about K.
But we are going to show that we can reconstruct ∆ form this graph. For this
we need the following lemma.

Lemma 3.3. Suppose that ∆ = 〈F1, . . . , Ft〉 and ∆′ = 〈F ′1, . . . , F ′t 〉 are two
simplicial complexes. If there exists a permutation σ on [t] such that for each
∅ 6= I ⊆ [t] we have | ∩i∈I Fi| = | ∩i∈I Fσ(i)|, then ∆ ∼= ∆′.

Proof. Assume that ∆ is on [n] and ∆′ is on [n′]. For each I ⊆ [t], let FI =
∩i∈IFi \ ∪i∈[t]\IFi and similarly define F ′I . Then we can compute |FI | (resp.
|F ′I |) from the cardinalities of ∩j∈JFj (resp. ∩j∈JF ′j) for different J ’s, using
the inclusion-exclusion principle. It follows that |FI | = |Fσ(I)| for each I ⊆ [t].
Suppose that φI : FI → F ′σ(I) is a bijection. Since [n] = ∪ti=1Fi = ∪I⊆[t]FI and

[n′] = ∪I⊆[t]F
′
I , we see that n = n′. Because the sets {FI}I⊆[t] are pairwise

disjoint, we can patch together the bijections φI to get a permutation φ =
∪I⊆[t]φI of [n]. Now using the fact that Fi = ∪i∈I⊆[t]FI , it is straightforward
to check that φ(Fi) = F ′σ(i) and hence the result is established. �

Recall that a clique of graph is a set of mutually adjacent vertices of that
graph.

Theorem 3.4. Suppose that ∆ and ∆′ are simplicial complexes. The following
are equivalent.

(i) Γsf(K[∆]) ∼= Γsf(K[∆′]).
(ii) K[∆] ∼= K[∆′].

(iii) ∆ ∼= ∆′.

Proof. (ii)⇔ (iii) is proved in [4] and (iii)⇒ (i) is trivial. According to Lemma
3.3, to show (i) ⇒ (iii), we just need to prove that if ∆ = 〈F1, . . . , Ft〉, then
the numbers | ∩i∈I Fi| are determined uniquely by Γsf(K[∆]). In this proof, we
consider vertices of Γsf(∆) to be faces of ∆, as mentioned after Definition 3.1.

Suppose that C = {A1, . . . , At′} is a largest clique in Γsf(∆). Since for i 6= j,
Ai and Aj are adjacent, we have Ai ∪ Aj /∈ ∆, that is, there is no facet of
∆ containing both Ai and Aj . If A1 ⊆ Fi and A1 ⊆ Fj for i 6= j, then
C\{A1}∪{Fi, Fj} is a clique larger than C, against the choice of C. So each Ai
is contained in exactly one facet of ∆. Also if some facet does not contain any
of the Aj ’s, then by adding that facet to C, we get a larger clique. Therefore,
it follows that t = t′, and after possibly reordering Ai’s, we can assume that
A1 ⊆ F1, . . . , At ⊆ Ft and Ai 6⊆ Fj for j 6= i. Therefore,

B ∈ N(Ai)⇔ B ∪Ai /∈ ∆⇔ B 6⊆ Fi ⇔ B ∈ N(Fi),

hence N(Ai) = N(Fi). Set Ωi = V(Γsf(∆)) \ N(Ai). Thus Ωi = {∅ 6= B ∈
∆ |B ⊆ Fi} = 2Fi \ {∅}. If ∅ 6= I ⊆ [t], then⋂

i∈I
Ωi =

⋂
i∈I

2Fi \ {∅} = 2∩i∈IFi \ {∅}.

Consequently, | ∩i∈I Fi| = log2 (| ∩i∈I Ωi|+ 1), as required. �



SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS 1387

The following is a corollary of the proof of the above theorem. In this
corollary by the clique number ω(G) of a graph G, we mean the largest size of
a clique in G.

Corollary 3.5. For a Stanley-Reisner ring R, ω (Γsf(R)) = |Ass(R)|.

Theorem 3.4, shows that all of the algebraic properties of a Stanley-Reisner
ring R, could be read off Γsf(R) together with the base filed K of R. For
example, the following shows how we can find the Krull dimension of R from
Γsf(R).

Corollary 3.6. Let R be a Stanley-Reisner ring and consider the family of all
independent sets of Γsf(R) which meet a largest clique. If α is the largest size
of such an independent set, then dimR = log2(α+ 1).

Proof. Let ∆ = 〈F1, . . . , Ft〉 be the simplicial complex corresponding to R.
Assume that I is a largest independent set of Γsf(R) which meets a largest
clique, say in the vertex A. Then I ⊆ V(Γsf(R)) \ N(A). But in the proof of
Theorem 3.4, we saw that for some 1 ≤ i ≤ t, V(Γsf(R)) \ N(A) = Ωi, where
Ωi = 2Fi \{∅}. Since Ωi is an independent set of Γsf(R), we deduce that I = Ωi
and log2(α + 1) = |Fi|. Since I is one of the largest such independent sets, Fi
is one of the largest facets of ∆. Now the result follows [5, Theorem 5.1.4]. �

Note that not all maximum size independent sets need to meet a largest
clique. For example, if G is the graph in Figure 1(a), then {x1, x2, x3} is a
largest independent but does not meet any largest clique. Note that in this
graph the largest size of an independent set meeting a largest clique equals
α(G) = 3, where α(G) denotes the largest size of an independent set in G. For
example, {x1, x2, x1x2} is a such a set. So we end this article with the following
question.

Question 3.7. Is the number α in Corollary 3.6, the same as α(Γsf(R))?
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