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A GENERALIZED IDEAL BASED-ZERO
DIVISOR GRAPHS OF NEAR-RINGS

Patchirajulu Dheena and Balasubramanian Elavarasan

Abstract. In this paper, we introduce the generalized ideal-based zero-

divisor graph structure of near-ring N, denoted by Γ̂I(N). It is shown that

if I is a completely reflexive ideal of N, then every two vertices in Γ̂I(N)

are connected by a path of length at most 3, and if Γ̂I(N) contains a cycle,

then the core K of Γ̂I(N) is a union of triangles and rectangles. We have

shown that if Γ̂I(N) is a bipartite graph for a completely semiprime ideal
I of N, then N has two prime ideals whose intersection is I.

1. Preliminaries

Throughout this paper, N denotes a zero-symmetric near-ring not necessar-
ily with identity unless otherwise stated. For any vertices x, y in a graph G,
if x and y are adjacent, we denote it as x ≈ y. In [3], Beck introduced the
concept of a zero-divisor graph of a commutative ring with identity, but this
work was mostly concerned with coloring of rings. In [2], Anderson and Liv-
ingston associate to a commutative ring with identity a (simple) graph Γ(R),
whose vertex set is Z(R)∗ = Z(R)\{0}, the set of nonzero-divisor of R, in
which two distinct x, y ∈ Z(R)∗ are joined by an edge if and only if xy = 0.
They investigated the interplay between the ring-theoretic properties of R and
the graph-theoretics properties of Γ(R). The zero-divisor graph has also been
introduced and studied for semigroups by DeMeyer et al. in [7].

In [11], Redmond has generalized the notion of the zero-divisor graph. For
a given ideal I of a commutative ring R, he defined an undirected graph ΓI(R)
with vertices {x ∈ R\I : xy ∈ I for some y ∈ R\I}, where distinct vertices x
and y are adjacent if and only if xy ∈ I. In [8], Dheena and Elavarasan extended
this graph structure to near-rings. Following [8], let I be a completely reflexive
ideal (i.e., ab ∈ I implies ba ∈ I for a, b ∈ N) of N. Then the ideal-based
zero-divisor graph, denoted by ΓI(N), is the graph whose vertices are the set
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{x ∈ N\I : xy ∈ I for some y ∈ N\I} with distinct vertices x and y are
adjacent if and only if xy ∈ I.

In this paper, we define a generalized ideal-based zero-divisor graph structure
of the near-ring N. Let N be a near-ring and I be a completely reflexive ideal
of N. We define an undirected graph Γ̂I(N) with vertices {x ∈ N\I : there
exists y ∈ N\I such that x1y1 ∈ I for some x1 ∈ 〈x〉\I and y1 ∈ 〈y〉\I}, where
distinct vertices x and y are adjacent if and only if x1y1 ∈ I for some x1 ∈ 〈x〉\I
and y1 ∈ 〈y〉\I, where 〈x〉 denotes the ideal of N generated by x.

Clearly ΓI(N) is a induced subgraph of Γ̂I(N), and if I = {0}, then Γ̂I(N)
will be denoted simply by Γ̂(N). Also, Γ̂I(N) = φ if and only if I is a prime
ideal of N. That is, V (Γ̂I(N)) = φ if and only if V (Γ̂(N/I)) = φ. Observe that
|V (ΓI(N))| = 0 if and only if |V (Γ̂I(N))| = 0. Also |V (ΓI(N))| ≤ |V (Γ̂I(N))|.
Example 1.1. Below are the generalized zero-divisor graphs for several near-
rings. Note that these examples show that the graph structures ΓI(N) and
Γ̂I(N) are not isomorphic and non-isomorphic near-rings may have the isomor-
phic generalized zero-divisor graph.

Given a graph G, for distinct vertices x and y of G, let d(x, y) be the
length of the shortest path from x to y. The diameter of a connected graph
is the supremum of the distances between vertices. The core K of G is the
union of all cycles of G. From [8], for any subset S and ideal I of N, we define
IS = {n ∈ N : nS ⊆ I}. If S = {a}, then we denote I{a} by Ia. In this paper
the notations of graph theory are from [5], the notations of near-ring are from
[10].

2. Main results

Theorem 2.1. Let I be a completely reflexive ideal of N. Then ΓI(N) is a
connected graph and diam(ΓI(N)) ≤ 3.

Proof. The sketch of this proof follows in the similar manner to the proof of
Theorem 2.4 of [11]. ¤

Lemma 2.2. Let I be a completely reflexive ideal of N. For any x, y ∈ Γ̂I(N),
if x ≈ y is an edge in Γ̂I(N), then for each n ∈ N\I, either n ≈ y or x ≈ y

′
is

an edge in Γ̂I(N) for some y
′ ∈ 〈y〉\I.
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Proof. Let x, y ∈ N\I with x ≈ y be an edge in Γ̂I(N) and suppose that
n ≈ y is not an edge in Γ̂I(N) for some n ∈ N\I. Then x1y1 ∈ I for some
x1 ∈ 〈x〉\I; y1 ∈ 〈y〉\I and ny1 /∈ I. But (ny1)x1 ∈ I. So x ≈ y

′
is an edge in

Γ̂I(N) for some y
′ ∈ 〈y〉\I. ¤

Theorem 2.3. Let I be a completely reflexive ideal of N. Then Γ̂I(N) is con-
nected graph with diam(Γ̂I(N)) ≤ 3.

Proof. Let x, y ∈ Γ̂I(N). If x1y1 ∈ I for some x1 ∈ 〈x〉\I and y1 ∈ 〈y〉\I, then
d(x, y) = 1. Let us assume that x1y1 /∈ I for all x1 ∈ 〈x〉\I and for all y1 ∈
〈y〉\I. Then x2

1 /∈ I and y2
1 /∈ I for all x1 ∈ 〈x〉\I and for all y1 ∈ 〈y〉\I. Since

x, y ∈ Γ̂I(N), there exist x2 ∈ 〈x〉\I; y2 ∈ 〈y〉\I and a1, b1 ∈ N\(I ∪ {x2, y2})
such that a1x2 ∈ I and b1y2 ∈ I.

If a1 = b1, then x ≈ a1 ≈ y is a path of length 2. So assume that a1 6= b1.
If a1b1 ∈ I, then x ≈ a1 ≈ b1 ≈ y is a path of length 3. Otherwise a1b1 /∈ I.

Then 〈a1〉 ∩ 〈b1〉 * I. Now for every d ∈ 〈a1〉 ∩ 〈b1〉\(I ∪ {x2, y2}), we have
dx2 ∈ 〈d〉〈x2〉 ⊆ 〈a1〉〈x2〉 ⊆ I and dy2 ∈ 〈b1〉〈y2〉 ⊆ I. Thus x ≈ d ≈ y is a path
of length 2 and hence ΓI(N) is connected and diam(Γ̂I(N) ≤ 3. ¤

Theorem 2.4. Let I be a completely reflexive ideal of N and if a ≈ x ≈ b is
a path in Γ̂I(N), then either I ∪ {x1} is an ideal of N for some x1 ∈ 〈x〉\I or
a ≈ x ≈ b is contained in a cycle of length ≤ 4.

Proof. Let a ≈ x ≈ b be a path in Γ̂I(N). Then there exist x1, x2 ∈ 〈x〉\I;a1 ∈
〈a〉\I and b1 ∈ 〈b〉\I such that a1x1 ∈ I and b1x2 ∈ I. If a

′
b
′ ∈ I for some

a
′ ∈ 〈a〉\I; for some 〈b〉\I, then a ≈ x ≈ b ≈ a is contained in a cycle of length
≤ 4. So let us assume that a1b1 /∈ I for all a1 ∈ 〈a〉\I and b1 ∈ 〈b〉\I.

Case (i) Let x1 = x2. Then either Ia1 ∩ Ib1 = I ∪ {x1} or there exists
c ∈ Ia1 ∩Ib1 such that c /∈ I ∪{x1}. Then ca1, cb1 ∈ I. In the first case, I ∪{x1}
is an ideal. In the second case a ≈ x ≈ b ≈ c ≈ a is contained in a cycle of
length ≤ 4.

Case (ii) Let x1 6= x2. Then clearly 〈a1〉 ∩ 〈b1〉 * I. Then for each z ∈
〈a1〉 ∩ 〈b1〉\I, we have zx1 ∈ 〈a1〉〈x1〉 ⊆ I and zx2 ∈ I. Clearly either x1 6= x
or x2 6= x. Say x1 6= x. Then we have a path a ≈ x1 ≈ b and hence a ≈ x ≈
b ≈ x1 ≈ a is contained in a cycle of length ≤ 4. ¤

In Theorem 2.4, the bound for the length of the cycle is sharp as the following
example shows.

Example 2.5. Let N = ( F F
0 F ) , where F = {0, 1} is the field under addition

and multiplication modulo 2. Then it’s prime radical P = {( 0 0
0 0 ) , ( 0 1

0 0 )} is a
completely reflexive ideal of the near-ring N and its generalized zero-divisor
graph Γ̂P (N) is:
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It is easy to verify that P ∪ {a} is not an ideal of N for any a ∈ 〈a2〉\P and
a4 ≈ a2 ≈ a6 is not contained in cycle of length 3.

Corollary 2.6. Let I be a completely reflexive ideal of N and |V (ΓI(N))| > 2.

If I ∪ {x} is not an ideal of N for any x ∈ N\I, then every edge in Γ̂I(N) is
contained in a cycle of length ≤ 4, and therefore Γ̂I(N) is a union of triangles
and squares.

Lemma 2.7. Let I be a completely reflexive ideal of N. Then, Γ̂I(N) can be
neither a pentagon nor a hexagon.

Proof. Suppose that Γ̂I(N) is a ≈ b ≈ c ≈ d ≈ e ≈ a, a pentagon. Then by
Theorem 2.4, for one of the vertices (say b), I ∪ {b1} is an ideal of N for some
b1 ∈ 〈b〉\I. Then in the pentagon, there exist d1 ∈ 〈d〉\I and e1 ∈ 〈e〉\I such
that d1e1 ∈ I. Since I ∪ {b1} is ideal, b1d1 = b1 = b1e1. But b1(d1e1) ∈ I, then
b1 ∈ I, a contradiction. The proof for the hexagon is the same. ¤
Theorem 2.8. Let I be a completely reflexive ideal of N. Then the following
hold:

(i) If N has identity, then Γ̂I(N) has no cut-vertices.
(ii) If N has no identity and if I is non-zero ideal of N, then Γ̂I(N) has no

cut-vertices.

Proof. Suppose that the vertex x of Γ̂I(N) is a cut vertex. Let u ≈ x ≈ w be
a path in Γ̂I(N). Since x is a cut-vertex, x lies in every path from u to w.

(i) Assume that N is a near-ring with identity.
For any u, v ∈ Γ̂I(N), there exist a path u ≈ 1 ≈ w which shows x(6= 1) in

Γ̂I(N) is not a cut vertex. Suppose x = 1. Then there exist u1 ∈ 〈u〉\I; w1 ∈
〈w〉\I and t1, t2 ∈ N\I such that u1t1, w1t2 ∈ I which implies u1, w1 ∈ ΓI(N).
Since ΓI(N) is connected, there exist n, n1 ∈ N\(I∪{x}) such that u1 ≈ n ≈ w1

or u1 ≈ n ≈ n1 ≈ w1 is a path in ΓI(N) which implies u ≈ n ≈ w ≈ 1 ≈ u

or u ≈ n ≈ n1 ≈ w ≈ 1 ≈ u is a cycle in Γ̂I(N), contradicting x = 1 is a
cut-vertex.



A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS 165

(ii) Let N be a near-ring without identity and I be a non-zero ideal of N.
Since u ≈ x ≈ w is a path from u to w, then there exist u1 ∈ 〈u〉\I;w1 ∈

〈w〉\I and x1, x2 ∈ 〈x〉\I such that u1x1 ∈ I and w1x2 ∈ I.
Case (i) x1 = x2

If u1 +I = x1 +I, then u1w1 ∈ I which implies u is adjacent to w. Similarly,
if x2 + I = w1 + I, u is adjacent to w. So assume that u1 + I 6= x1 + I and
x2 + I 6= w1 + I. Let 0 6= i ∈ I. Then u1x1 ∈ I and w1x2 ∈ I which imply that
u1(x1 + i), w1(x1 + i) ∈ I. If x = x1 + i, then x 6= x1 which implies u ≈ x1 ≈ w

is a path in Γ̂I(N). Otherwise u ≈ (x1 + i) ≈ w is a path in Γ̂I(R). Thus there
exist a path from u to w not passing through x, a contradiction.

Case (ii) Either x1 or x2 equal to x.
Without loss of generality, let us assume that x1 = x and x2 6= x. Then

u1x ∈ I and x2w1 ∈ I which implies u1x2 ∈ I and x2w1 ∈ I, and so we have a
path u ≈ x2 ≈ w, a contradiction.

Case (iii) Neither x1 nor x2 equal to x.
If x1x2 ∈ I, then we have a path u ≈ x1 ≈ x2 ≈ w, a contradiction.

Otherwise x1x2 /∈ I.
If x1x2 = x, then u1x ∈ I and w1x ∈ I. By sub case (i), we have a contra-

diction.
So assume that x1x2 6= x, then we have a path u ≈ x1x2 ≈ w, a contradic-

tion.
Thus x can not be a cut-vertex. ¤

From Theorem 2.8, we have the following question. If N is a near-ring
without identity and {0} is a completely reflexive ideal of N, then whether
Γ̂(N) has a cut-vertex.

Theorem 2.9. Let I be a completely reflexive ideal of N. If Γ̂I(N) contains a
cycle, then the core K of Γ̂I(N) is a union of triangles and rectangles. More-
over, any vertex in Γ̂I(N) is either a vertex of the core K of Γ̂I(N) or else is
an end vertex of Γ̂I(N).

Proof. Let a ∈ K and assume that a is not in any square or rectangle in Γ̂I(N).
Then a is part of a cycle a ≈ b ≈ c ≈ d ≈ · · · ≈ a which implies c1d1 ∈ I for
some c1 ∈ 〈c〉\I and d1 ∈ 〈d〉\I. Also, by Lemma 2.4, I ∪ {a1} is an ideal of N
for some a1 ∈ 〈a〉\I. Then d1a1 = a1 = c1a1 and a1(d1c1) ∈ I which implies
a1 ∈ I, a contradiction.

For the “moreover”statement, we can assume
∣∣∣Γ̂I(N)

∣∣∣ ≥ 3. If x is a vertex

in Γ̂I(N), then one of the following is true:
1. x is in the core;
2. x is an end vertex of Γ̂I(N);
3. a ≈ x ≈ b is a path in Γ̂I(N) where a is an end vertex and b ∈ K;
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4. a ≈ x ≈ y ≈ b or a ≈ y ≈ x ≈ b is a path in Γ̂I(N), where a is an end
vertex and b ∈ K.

In the first two cases, we are done. Let us assume that a ≈ x ≈ b is a path
with b ∈ K. Then by Lemma 2.4, I ∪{x1} is an ideal of N for some x1 ∈ 〈x〉\I
and x ≈ b ≈ c ≈ d ≈ b or x ≈ b ≈ c ≈ d ≈ e ≈ b is a path in Γ̂I(N) which
implies c1d1 ∈ I for some c1 ∈ 〈c〉\I and d1 ∈ 〈d〉\I. Since x /∈ K, we have
x1c1 = x1 and so x is a vertex in the cycle x ≈ b ≈ c ≈ d ≈ x, a contradiction.

Although the proof of case 4 is just a slight modification of that for Theo-
rem 2.4 given in [6], we include a sketch of the proof to illustrate the style.

Without loss of generality, assume a ≈ x ≈ y ≈ b is a path in Γ̂I(N). Since
b ∈ K, there is some c ∈ K such that c 6= b and b ≈ c is part of a cycle. Then
a ≈ x ≈ y ≈ b ≈ c is a path in Γ̂I(N). But the distance from a to c is four, a
contradiction unless y ≈ c or x ≈ c is an edge. However, if y ≈ c is an edge,
then y ∈ K. By case 3, x is also in the core. If instead, x ≈ c is an edge, then
x ≈ y ≈ b ≈ c ≈ x is a cycle. Thus x, y ∈ K.

Hence it must be the case that any vertex x of Γ̂I(N) is either an end or in
the core. ¤

Corollary 2.10. Let I be a completely reflexive ideal of N. If N has identity
with |V (ΓI(N))| ≥ 2 or if I is non-zero ideal of N with |V (ΓI(N))| > 2, then
Γ̂I(N) = K, where K is the core of Γ̂I(N).

Corollary 2.11. Let I be a completely reflexive ideal of N with |V (ΓI(N))| >
2. If I ∪ {x} is not an ideal of N, then every pair of vertices in Γ̂I(N) is
contained in a cycle of length ≤ 6.

Proof. Let a, b be vertices of Γ̂I(N). If a ≈ b is an edge in Γ̂I(N), then a ≈ b is
the edge of a triangle or rectangle by Corollary 2.6. If a ≈ x ≈ y is a path in
Γ̂I(N), then a ≈ x ≈ b is contained in a cycle of length ≤ 4 by Theorem 2.4.
If a ≈ x ≈ y ≈ b is a path in Γ̂I(N), then by Lemma 2.4 we can find cycles
a ≈ x ≈ y ≈ c ≈ a and b ≈ y ≈ x ≈ d ≈ b, where c 6= x and d 6= y. This gives
a cycle a ≈ x ≈ d ≈ b ≈ y ≈ c ≈ a of length ≤ 6. ¤

Recall that a bipartite graph is one whose vertex set can be partitioned into
two subsets so that no edge has both ends in any one subset. We now obtain
the properties of a near-ring implied by its generalized ideal-based zero-divisor
graph.

Theorem 2.12. Let I be a completely reflexive ideal of N and I is completely
semiprime. If Γ̂I(N) is a bipartite graph, then there exist prime ideals P1 and
P2 of N such that I = P1 ∩ P2.

Proof. Let A, B be the partition of the graph Γ̂I(N). Let V1 = {x ∈ A is a
vertex in Γ̂I(N) such that xy ∈ I for some y ∈ B} and V2 = {y ∈ B is a
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vertex in Γ̂I(N) such that xy ∈ I for some y ∈ A}. Observe that V1 and V2 are
non-empty and also V1 ∩ I = V2 ∩ I = φ. Let P1 = V1 ∪ I and P2 = V2 ∪ I.
Then I = P1 ∩ P2. Let us show that P1 is an ideal of N. Let x1, x2 ∈ P1.

Case (i): If x1 and x2 are in I, then x1 − x2 ∈ I ⊆ P1.

Case (ii): Let x1, x2 ∈ V1. If x1 − x2 ∈ I, then x1 − x2 ∈ P1. Hence let
us assume that x1 − x2 /∈ I. Now there exist y1, y2 ∈ V2 such that x1y1 ∈ I
and x1y2 ∈ I. Hence x1y1y2 ∈ I and x2y1y2 ∈ I. If y1y2 ∈ I, then y1 ≈ y2

contradicts to the fact that no two vertices in B are adjacent. Hence y1y2 /∈ I.
Clearly x1−x2 /∈ V2 and x1−x2 6= y1y2. Indeed, if x1−x2 ∈ V2 or x1−x2 = y1y2,
then (x1 − x2)y1y2 ∈ I or (y1y2)2 ∈ I, a contradiction since y1y2 ∈ V2. Now
(x1 − x2)y1y2 ∈ I with x1 − x2 /∈ I, y1y2 /∈ I. Thus x1 − x2 ∈ A and y1y2 ∈ B
and hence x1 − x2 ∈ V1 ⊆ P1.

Case (iii): Suppose x1 ∈ V1 and x2 ∈ I. Clearly x1 − x2 /∈ I. Since x1 ∈ V1,
there exists y1 ∈ V2 such that x1y1 ∈ I. Clearly y1 /∈ I as V2 ∩ I = φ. Now
(x1 − x2)y1 ∈ I with x1 − x2 /∈ I and y1 /∈ I. Thus x1 − x2 ∈ A and y1 ∈ B.
Hence x1 − x2 ∈ V1 ⊆ P1. Thus P1 is an additive subgroup of N.

Now let us show that P1 is a normal subgroup of N. Let x ∈ P1 and n ∈ N.
If x ∈ I, then n + x − n ∈ I ⊆ P1. Let us assume x ∈ V1. Then there exists
y ∈ V2 such that xy ∈ I. If n + x − n ∈ I, we are done. Let us assume
n + x− n /∈ I. Now (n + x− n)y = ny − xy − ny ∈ I. Thus n + x− n ∈ A and
hence n + x− n ∈ V1 ⊆ P1. So P1 is a normal subgroup of N.

Now we claim that P1 is a right ideal of N. Let x ∈ P1 and n ∈ N. If x ∈ I,
then xn ∈ I ⊆ P1. If nx ∈ I, we are done. So nx /∈ I and x ∈ V1. Then there
exists y ∈ V2 such that xy ∈ I. Now (nx)y ∈ I with nx /∈ I and y /∈ I. Thus
nx ∈ A and hence nx ∈ V1 ⊆ P1. So P1 is a right ideal of N.

Now let us show that P1 is a left ideal of N. Let x ∈ P1 and n, n
′ ∈ N.

If x ∈ I, then n(n
′
+ x) − nn

′ ∈ I ⊆ P1. Let us assume that x ∈ V1. If
n(n

′
+x)−nn

′ ∈ I, then we are done. Hence let us assume n(n
′
+x)−nn

′
/∈ I.

Since x ∈ V1, there exists y ∈ V2 such that xy ∈ I. Clearly y /∈ I. Now
(n(n

′
+x)−nn

′
)y = n(n

′
y+xy)−n(n

′
y) ∈ I as xy ∈ I. Thus n(n

′
+x)−nn

′ ∈
V1 ⊆ P1 and hence P1 is an ideal of N. So P1 is an ideal of N. Similarly P2 is
an ideal of N.

We now show that P1 is a prime ideal of N. Let J and K be ideals of N
such that JK ⊆ P1 and suppose that J * P1. Let j ∈ J but j /∈ P1. Let k ∈ K.
If k ∈ I, then k ∈ P1. Let us assume that k /∈ I. Clearly jk ∈ P1. If jk ∈ I,
then j ∈ B and k ∈ A since j /∈ V1, and hence k ∈ V1 ⊆ P1. If jk /∈ I, then
jk ∈ V1 and there exists y ∈ V2 such that jky ∈ I. Since P2 is an ideal, we
have jy ∈ V2, and so k ∈ V1 ⊆ P1. Thus P1 is a prime ideal of N. Similarly P2

is a prime ideal of N. ¤

Note that in Theorem 2.12, the converse is not true in general, as the fol-
lowing example shows.
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Example 2.13. In N = Z6, {0} is a completely reflexive ideal and completely
semiprime ideal and Z6 has only two prime ideals, but its generalized ideal-
based zero-divisor graph Γ̂(N) is not a bipartite.

We now also show by an example that the Theorem 2.12 will fail if I is not
completely semiprime.

Example 2.14. Let (N, +) (where N = {0, a, b, c}) be the Klein’s four group.
Define multiplication in N as follows:

· 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 a
c 0 0 0 a

Then (N, +, ·) is a near-ring (see Pilz [10], P-408, Scheme-14). If I = {0, a},
then I is completely reflexive, but not completely semiprime. Here Γ̂I(N) is
a complete bipartite graph but I cannot be written as the intersection of two
prime ideals.

Acknowledgment. The authors express their sincere thanks to the referee
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