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A GENERALIZED IDEAL BASED-ZERO
DIVISOR GRAPHS OF NEAR-RINGS

PATCHIRAJULU DHEENA AND BALASUBRAMANIAN ELAVARASAN

ABSTRACT. In this paper, we introduce the generalized ideal-based zero-
divisor graph structure of near-ring IV, denoted by IT(_N) It is shown that
if I is a completely reflexive ideal of N, then every two vertices in IT(F)
are connected by a path of length at most 3, and if IT(_N) contains a cycle,
then the core K of m is a union of triangles and rectangles. We have

shown that if I'; (V) is a bipartite graph for a completely semiprime ideal
I of N, then N has two prime ideals whose intersection is I.

1. Preliminaries

Throughout this paper, N denotes a zero-symmetric near-ring not necessar-
ily with identity unless otherwise stated. For any vertices x,y in a graph G,
if x and y are adjacent, we denote it as z &~ y. In [3], Beck introduced the
concept of a zero-divisor graph of a commutative ring with identity, but this
work was mostly concerned with coloring of rings. In [2], Anderson and Liv-
ingston associate to a commutative ring with identity a (simple) graph T'(R),
whose vertex set is Z(R)* = Z(R)\{0}, the set of nonzero-divisor of R, in
which two distinct z,y € Z(R)* are joined by an edge if and only if zy = 0.
They investigated the interplay between the ring-theoretic properties of R and
the graph-theoretics properties of I'(R). The zero-divisor graph has also been
introduced and studied for semigroups by DeMeyer et al. in [7].

In [11], Redmond has generalized the notion of the zero-divisor graph. For
a given ideal I of a commutative ring R, he defined an undirected graph I';(R)
with vertices {x € R\I : zy € I for some y € R\I}, where distinct vertices x
and y are adjacent if and only if zy € I. In [8], Dheena and Elavarasan extended
this graph structure to near-rings. Following [8], let I be a completely reflexive
ideal (i.e., ab € I implies ba € I for a,b € N) of N. Then the ideal-based
zero-divisor graph, denoted by I';(NV), is the graph whose vertices are the set
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{zr € N\I : 2y € I for some y € N\I} with distinct vertices x and y are
adjacent if and only if zy € I.

In this paper, we define a generalized ideal-based zero-divisor graph structure
of the near-ring N. Let N be a near-ring and I be a completely reflexive ideal

=2 —

of N. We define an undirected graph I';(N) with vertices {x € N\I : there
exists y € N\I such that x;y; € I for some x; € (x)\I and y; € (y)\I}, where
distinct vertices x and y are adjacent if and only if z1y; € I for some 1 € (x)\I
and y; € (y)\I, where (z) denotes the ideal of N generated by z.

Clearly T';(N) is a induced subgraph of IT(W), and if T = {0}, then F/(\N)
will be denoted simply by F/(-]V) Also, IT(N) = ¢ if and only if I is a prime
ideal of N. That is, V([;(N)) = ¢ if and only if V(I'(N/I)) = ¢. Observe that

[V(Dr(N))| = 0 if and only if |V(T7(N))| = 0. Also |[V(Dr(N))| < [V(T7 (V).

Example 1.1. Below are the generalized zero-divisor graphs for several near-
rings. Note that these examples show that the graph structures I';(N) and

_—

I';(N) are not isomorphic and non-isomorphic near-rings may have the isomor-
phic generalized zero-divisor graph.

1

1

l+<x*> 3 2

AN

X+<X2>/\]+X+<X2> 4 s 1 34
— —
I(Z,) [(Z,[X]/< X >) I'(Z,) ITZ)

Given a graph G, for distinct vertices x and y of G, let d(x, y) be the
length of the shortest path from = to y. The diameter of a connected graph
is the supremum of the distances between vertices. The core K of G is the
union of all cycles of G. From [8], for any subset S and ideal I of N, we define
Is={neN : nSCI}. If S={a}, then we denote I,y by I,. In this paper
the notations of graph theory are from [5], the notations of near-ring are from
[10].

2. Main results

Theorem 2.1. Let I be a completely reflexive ideal of N. Then T';(N) is a
connected graph and diam(I';(N)) < 3.

Proof. The sketch of this proof follows in the similar manner to the proof of
Theorem 2.4 of [11]. O

—

Lemma 2.2. Let I be a completely reflexive ideal of N. For any x,y € T';(N),
if t =y is an edge in I';(N), then for each n € N\I, either n ~ y or x ~ y s
an edge in D7 (N) for some y € (y)\I.
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—

Proof. Let x,y € N\I with © ~ y be an edge in I';(/N) and suppose that
n & y is not an edge in I'T(ﬁ) for some n € N\I. Then z1y; € I for some
z1 € (e\I;y1 € (W\I and ny; ¢ I. But (ny1)z; € I. So 2 ~ ¢ is an edge in
IT(N) for some 3 € (y)\I. O

o —

Theorem 2.3. Let I be a completely reflexive ideal of N. Then T'r(N) is con-
nected graph with diam(T';(N)) < 3.
Proof. Let z,y € F/(W) If z1y1 € I for some x1 € (z)\I and y; € (y)\I, then
d(z,y) = 1. Let us assume that xyy; ¢ I for all 1 € (x)\I and for all y; €
(y)\I. Then 2% ¢ I and y? ¢ I for all z; € (x)\I and for all y; € (y)\I. Since
x,y € I';1(N), there exist z2 € (x)\I;y2 € (y)\I and a1,b1 € N\(I U {z2,y2})
such that a1x2 € I and byys € I.
If a1 = by, then x =~ a1 =~ y is a path of length 2. So assume that a; # b;.
If a1by € I, then x & a1 =~ by & y is a path of length 3. Otherwise a1b; ¢ I.
Then (a1) N (b1) € I. Now for every d € (a1) N (b1)\(L U {z2,y2}), we have
dzy € (d){x2) C (a1){xz2) C I and dys € (b1)(y2) C I. Thus z ~ d &~ y is a path
of length 2 and hence I';(N) is connected and diam(I';(N) < 3. O

Theorem 2.4. Let I be a completely reflexive ideal of N and if a = x ~ b is

—

a path in Tr(N), then either I U {x1} is an ideal of N for some x1 € (x)\I or
a = x =~ b is contained in a cycle of length < 4.

—

Proof. Let a &~ x & b be a path in I';(N). Then there exist z1,x2 € (x)\I;a1 €
(a)\I and b; € (B)\I such that ayz; € I and byzy € I. If a'b" € I for some
a' € (a)\I; for some (b)\I, then a ~ & ~ b ~ a is contained in a cycle of length
< 4. So let us assume that a1by ¢ I for all a; € (a)\I and by € (b)\I.

Case (i) Let #; = xo. Then either I, NI, = I U {x1} or there exists
¢ € Iy, NI, such that ¢ ¢ TU{z1}. Then cay,cb; € I. In the first case, IU{z;}
is an ideal. In the second case a ~ © =~ b = ¢ = a is contained in a cycle of
length < 4.

Case (ii) Let @1 # 2. Then clearly (a1) N (b1) ¢ I. Then for each z €
(a1) N {b1)\I, we have zz1 € (a1){x1) C I and zze € I. Clearly either z1 # z
or ro # x. Say x1 # x. Then we have a path a =~ x; =~ b and hence a =~ = =
b~ x1 ~ a is contained in a cycle of length < 4. (I

In Theorem 2.4, the bound for the length of the cycle is sharp as the following
example shows.

Example 2.5. Let N = (5 L), where F' = {0,1} is the field under addition
and multiplication modulo 2. Then it’s prime radical P = {(39),(33)} is a
completely reflexive ideal of the near-ring N and its generalized zero-divisor

graph I'p(N) is:
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It is easy to verify that P U {a} is not an ideal of N for any a € (a2)\P and
a4 = as = ag is not contained in cycle of length 3.

Corollary 2.6. Let I be a completely reflexive ideal of N and |V (T;(N))| > 2.
If TU{zx} is not an ideal of N for any x € N\I, then every edge in T'1(N) is
contained in a cycle of length < 4, and therefore T'r(N) is a union of triangles

and squares.

o —

Lemma 2.7. Let I be a completely reflexive ideal of N. Then, T'r(N) can be
neither a pentagon nor a hexagon.

—

Proof. Suppose that I';(N) is a & b =~ ¢ = d &~ e &~ a, a pentagon. Then by
Theorem 2.4, for one of the vertices (say b), I U {b;} is an ideal of N for some
by € (b)\I. Then in the pentagon, there exist d; € (d)\I and e; € (e)\I such
that dye; € I. Since I U {b1} is ideal, bydy = by = bie;. But by (d1€1) € I, then
b1 € I, a contradiction. The proof for the hexagon is the same. (I

Theorem 2.8. Let I be a completely reflexive ideal of N. Then the following
hold:

(i) If N has identity, then T';(N) has no cut-vertices.

(ii) If N has no identity and if I is non-zero ideal of N, then T'r(N) has no
cut-vertices.

Proof. Suppose that the vertex = of I';(NN) is a cut vertex. Let u =~ = ~ w be

a path in I';(N). Since x is a cut-vertex, x lies in every path from u to w.
(i) Assume that N is a near-ring with identity.

For any w,v € T';(IN), there exist a path u ~ 1 &~ w which shows z(# 1) in

—

I';(N) is not a cut vertex. Suppose x = 1. Then there exist u; € (u)\I;w; €
(w)\I and t1,t5 € N\I such that uyty, wite € I which implies uy,w; € T'(N).
Since I'; (V) is connected, there exist n,ny € N\(IU{x}) such that uy ~ n ~ w;
or u; & n & ng &~ wp is a path in T7(N) which implies u ® n ~w =~ 1=~ u
oru~n=~n ~w=x1=~uisa cyclein IT(—F), contradicting x = 1 is a
cut-vertex.
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(ii) Let N be a near-ring without identity and I be a non-zero ideal of N.

Since u ~ x ~ w is a path from u to w, then there exist u; € (u)\I;w; €
(w)\I and x1,z2 € (x)\I such that u;z; € I and wixe € I.

Case (i) z1 = a9

If u;+1 = x1+1, then uyw; € I which implies u is adjacent to w. Similarly,
if zo + 1 = wy + I, u is adjacent to w. So assume that u; + I # x1 + I and
o+ I #wi+1.Let 0#£4 € I. Then uyxy € I and wixe € I which imply that
up(z1 +10),wi(x1 +14) € I. If & = 21 + 4, then x # x; which implies u = z; = w
is a path in F/I(F) Otherwise u &~ (1 +¢) ~ w is a path in IT(E) Thus there
exist a path from u to w not passing through x, a contradiction.

Case (ii) Either 21 or x5 equal to x.

Without loss of generality, let us assume that 1 = x and z2 # x. Then
uix € I and zowy € I which implies ujxo € I and xzow; € I, and so we have a
path u = x2 =~ w, a contradiction.

Case (iii) Neither z; nor x equal to x.

If z129 € I, then we have a path u =~ 1 = 9 = w, a contradiction.
Otherwise x129 ¢ 1.

If 2129 = z, then uyz € I and wyx € I. By sub case (i), we have a contra-
diction.

So assume that ziz2 # z, then we have a path u =~ z1z2 =~ w, a contradic-
tion.

Thus « can not be a cut-vertex. O

From Theorem 2.8, we have the following question. If N is a near-ring
without identity and {0} is a completely reflexive ideal of N, then whether

—

I'(N) has a cut-vertex.

-

Theorem 2.9. Let I be a completely reflexive ideal of N. If T1(N) contains a

cycle, then the core K of T'1(N) is a union of triangles and rectangles. More-

-

over, any vertex in T'1(N) is either a vertex of the core K of T1(N) or else is
an end vertex of T'1(N).

—

Proof. Let a € K and assume that a is not in any square or rectangle in I'; (N).
Then a is part of a cycle a = b~ ¢~ d =~ --- = a which implies ¢1d; € I for
some ¢ € ()\I and d; € (d)\I. Also, by Lemma 2.4, I U {a;} is an ideal of N
for some a; € {a)\I. Then dia; = a1 = c1a1 and a1(dic;) € I which implies
a1 € I, a contradiction. -

For the “moreover”statement, we can assume ‘1" (N )‘ > 3. If z is a vertex

—

in I';(N), then one of the following is true:
1. z is in the core;

2. x is an end vertex of IT(\N);

3. a~x~bisapathin IT(F) where a is an end vertex and b € K;
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4. a%x%yzboramymxzbisapathinI‘/(F),whereaisanend
vertex and b € K.

In the first two cases, we are done. Let us assume that a ~ x =~ b is a path
with b € K. Then by Lemma 2.4, I U{z;} is an ideal of N for some z; € (x)\/
and:czbzc%dwborm%bzczdze%bisapathinlf(-ﬁ)Which
implies ¢1d; € I for some ¢; € (¢)\I and d; € (d)\I. Since =z ¢ K, we have
r1c1 = 21 and so x is a vertex in the cycle x =~ b~ c =~ d =~ x, a contradiction.

Although the proof of case 4 is just a slight modification of that for Theo-
rem 2.4 given in [6], we include a sketch of the proof to illustrate the style.

Without loss of generality, assume a &~ = ~ y ~ b is a path in IT(-F) Since
b € K, there is some ¢ € K such that ¢ # b and b = ¢ is part of a cycle. Then

a~1r /Yy~ b cisa pathin IT(-N) But the distance from a to c is four, a
contradiction unless y ~ c or = = c is an edge. However, if y ~ c is an edge,
then y € K. By case 3, x is also in the core. If instead, x =~ ¢ is an edge, then
rr~y~b~rc=xisacycle. Thus z,y € K. .

Hence it must be the case that any vertex x of I'y(IV) is either an end or in
the core. (]

Corollary 2.10. Let I be a completely reflexive ideal of N. If N has identity
with [V(Tr(N))| > 2 or if I is non-zero ideal of N with |V (T;(N))| > 2, then
T';(N) = K, where K is the core of T (N).

Corollary 2.11. Let I be a completely reflexive ideal of N with |V (I'1(N))| >

I

2. If I U {x} is not an ideal of N, then every pair of vertices in I'y(N) is
contained in a cycle of length < 6.

-

Proof. Let a,b be vertices of I';(N). If a ~ b is an edge in m, then a ~ b is
the edge of a triangle or rectangle by Corollary 2.6. If a ~ x ~ y is a path in

o —

I';(N), then a = = & b is contained in a cycle of length < 4 by Theorem 2.4.

o —

If a =z~ y=~bisa path in T';(IN), then by Lemma 2.4 we can find cycles
arxr~ry~cx~aand bry~x~d=b, where ¢ # x and d # y. This gives
acyclea~zr~d~b~y=c=aof length <6. (]

Recall that a bipartite graph is one whose vertex set can be partitioned into
two subsets so that no edge has both ends in any one subset. We now obtain
the properties of a near-ring implied by its generalized ideal-based zero-divisor
graph.

Theorem 2.12. Let I be a completely reflexive ideal of N and I is completely

semiprime. If U1 (N) is a bipartite graph, then there exist prime ideals Py and
Py of N such that I = P, N Ps.

—

Proof. Let A, B be the partition of the graph I'y(N). Let V} = {x € Ais a
vertex in I';(N) such that zy € I for some y € B} and Vo = {y € Bis a
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vertex in IT(N) such that zy € I for some y € A}. Observe that V; and V, are
non-empty and also ViNI =VoNIl =¢. Let P, =V, Ul and P, = VL U I.
Then I = P; N P». Let us show that P; is an ideal of N. Let x1, x5 € P;.

Case (i): If 1 and x5 are in I, then 1 —a9 € I C P;.

Case (ii): Let x1,29 € V4. If &1 — 29 € I, then 1 — xo € P;. Hence let
us assume that 1 — xo ¢ I. Now there exist y1,y2 € Vo such that z1y; € T
and x1y2 € I. Hence z1y1y2 € I and xoy 1y € I. If y1ys € I, then y; =~ yo
contradicts to the fact that no two vertices in B are adjacent. Hence y1ya2 ¢ 1.
Clearly 1 —xo ¢ Vo and x1—2x2 # y1y2. Indeed, if 21 —xz9 € Va5 or 21 —22 = Y1y,
then (x1 — 22)y1y2 € I or (y1y2)? € I, a contradiction since 3172 € Vo. Now
(x1 — 22)y1y2 € I with 1 — 29 € I, y1y2 ¢ I. Thus z1 — 29 € A and y1y2 € B
and hence 1 — x5 € V4 C P;.

Case (iii): Suppose x1 € V; and xs € I. Clearly x1 — x2 ¢ I. Since z1 € V7,
there exists y; € V5 such that x1y; € I. Clearly y; ¢ T as Vo NI = ¢. Now
(x1 —x2)yy € I with 7 — 29 ¢ T and y; ¢ I. Thus 1 — 29 € A and y; € B.
Hence z1 — zo € V7 C P;. Thus P; is an additive subgroup of N.

Now let us show that P; is a normal subgroup of N. Let z € P; and n € N.
Ifx€l,thenn+x—n €l C P. Let us assume = € V;. Then there exists
y € Vo such that 2y € I. If n+2 —n € I, we are done. Let us assume
n+x—n¢gl.Now(n+ax—n)y=ny—azy—ny € Il. Thusn+z—n¢€ A and
hence n+x —n € Vi C P;. So P; is a normal subgroup of N.

Now we claim that Pj is a right ideal of N. Let x € P, and n € N. If x € I,
then an € I C Py. If nx € I, we are done. So na ¢ I and = € V4. Then there
exists y € Vo such that zy € I. Now (nz)y € I with nz ¢ I and y ¢ I. Thus
nx € A and hence nz € V; C P;. So P is a right ideal of N.

Now let us show that P; is a left ideal of N. Let € P, and n,n" € N.
If 2 € I, then n(n +2) —nn' € I C P;. Let us assume that = € V;. If
n(n +x)—nn" € I, then we are done. Hence let us assume n(n’ +z)—nn' ¢ I.
Since x € Vi, there exists y € Vo such that xy € I. Clearly y ¢ I. Now
(n(n' +x)—nn' )y = n(n'y+zy)—n(n'y) € Tas xy € I. Thus n(n +z)—nn €
V1 C P; and hence P; is an ideal of N. So P; is an ideal of N. Similarly P; is
an ideal of NN.

We now show that P is a prime ideal of N. Let J and K be ideals of NV
such that JK C P; and suppose that J ¢ P;. Let j € J but j ¢ P;. Let k € K.
If k € I, then k € Py. Let us assume that k ¢ I. Clearly jk € P,. If jk € I,
then j € B and k € A since j ¢ Vi, and hence k € V7 C Py. If jk ¢ I, then
jk € Vi and there exists y € V5 such that jky € I. Since P» is an ideal, we
have jy € V5, and so k € V; C P;. Thus P; is a prime ideal of N. Similarly P
is a prime ideal of N. O

Note that in Theorem 2.12, the converse is not true in general, as the fol-
lowing example shows.
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Example 2.13. In N = Zg, {0} is a completely reflexive ideal and completely
semiprime ideal and Zg has only two prime ideals, but its generalized ideal-

based zero-divisor graph I'(IV) is not a bipartite.

We now also show by an example that the Theorem 2.12 will fail if I is not
completely semiprime.

Example 2.14. Let (N, +) (where N = {0, a,b,c}) be the Klein’s four group.
Define multiplication in N as follows:

o o e O

SO O oo
O O O Ol
o O O ol
Q@ Q O oOln

Then (N, +,-) is a near-ring (see Pilz [10], P-408, Scheme-14). If I = {0,a},
then I is completely reflexive, but not completely semiprime. Here I';(N) is
a complete bipartite graph but I cannot be written as the intersection of two
prime ideals.
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