AN IDEAL - BASED ZERO-DIVISOR GRAPH OF POSETS

BALASUBRAMANIAN ELAVARASAN AND KASI PORSELVI

ABSTRACT. The structure of a poset P with smallest element 0 is looked at from two view points. Firstly, with respect to the Zariski topology, it is shown that Spec(P), the set of all prime semi-ideals of P, is a compact space and Max(P), the set of all maximal semi-ideals of P, is a compact T_1 subspace. Various other topological properties are derived. Secondly, we study the semi-ideal-based zero-divisor graph structure of poset P, denoted by $G_I(P)$, and characterize its diameter.

1. Preliminaries

Throughout this paper, (P, \leq) denotes a poset with a least element 0, and all prime and maximal semi-ideals of P are assumed to be proper. For $M \subseteq P$, let $(M)^l := \{x \in P : x \leq m \text{ for all } m \in M\}$ denote the lower cone of M in P, and dually let $(M)^u := \{x \in P : m \leq x \text{ for all } m \in M\}$ be the upper cone of M in P. For $A, B \subseteq P$, we write $(A, B)^l$ instead of $(A \cup B)^l$ and dually for the upper cones. If $M = \{x_1, x_2, \ldots, x_n\}$ is finite, then we use the notation $(x_1, x_2, \ldots, x_n)^l$ instead of $(\{x_1, x_2, \ldots, x_n\})^l$ (and dually). We use Spec(P) and Max(P) for the spectrum of prime semi-ideals and the maximal semi-ideals of P, respectively.

Following [10], a nonempty subset I of P, I is called a semi-ideal of P if $b \in I$ and $a \leq b$, then $a \in I$. A proper semi-ideal I of P is called prime if for any $a, b \in P$, $(a, b)^l \subseteq I$ implies $a \in I$ or $b \in I$. In [5], Radomir Halaš, in which he has used the term ideals for the semi-ideals of a poset, defined a class of n-prime semi-ideals in posets, a semi-ideal I is called n-prime if for pairwise distinct elements $x_1, x_2, \ldots, x_n \in P$, if $(x_1, x_2, \ldots, x_n)^l \subseteq I$, then at least (n - 1) of n-subsets $(x_2, x_3, \ldots, x_n)^l$, $(x_1, x_3, \ldots, x_n)^l, \ldots, (x_1, x_2, \ldots, x_{n-1})^l$ is a subset of I. From Theorem 3 of [5], we can observe that every prime semi-ideal of P is n-prime. For any semi-ideal J of P and $a \in P$, we define $V(a) = \{I \in Spec(P) : a \in I\}$ and $D(I) = Spec(P) \setminus V(I)$. Let $V(J) = \bigcap_{a \in J} V(a)$. Then $F = \{V(J) : J$ is an semi-ideal of P is closed under finite unions and arbitrary intersections, so that there is a topology on Spec(P) for which F is

 $\bigodot 2013$ The Korean Mathematical Society

79

Received May 16, 2011; Revised November 23, 2011.

²⁰¹⁰ Mathematics Subject Classification. 05C99, 06B35.

Key words and phrases. posets, semi-ideals, prime semi-ideals, zero-divisor graph.

the family of closed sets. This is called the Zariski topology. It is easy to see that, for any subset A of P, $(A)^l$ is a semi-ideal of P. If $A = \{a\}$, for any $a \in P$, then $(a)^l$ is the smallest semi-ideal containing a, and also $V(a) = V((a)^l)$. Also $B = \{D(a) : a \in P\}$ form a basis for a topology on Spec(P). It is also clear that $Max(P) \subseteq Spec(P)$.

In [2], I. Beck introduced the idea of a zero-divisor graph of a commutative ring. Let the zero-divisors of R be the vertices and connect two vertices aand b by an edge in case ab = 0. Later in [1], D. F. Anderson and P. S. Livingston have considered only non-zero zero-divisors as vertices of the zerodivisor graph of R, denoted by $\Gamma(R)$, is the (undirected) graph with vertices $Z(R)^* = Z(R) \setminus \{0\}$, the set of non-zero zero-divisors of R, and for distinct $x, y \in Z(R)^*$, the vertices x and y are adjacent if and only if xy = 0. In [9], S. P. Redmond generalized this notion by replacing elements whose product is zero with elements whose product lies in some ideal I of R.

In [6], R. Halaš and M. Jukl have introduced the concept of a graph structure of posets, let (P, \leq) be a poset with 0. Then the zero-divisor graph of P, denoted by G(P), is an undirected graph whose vertices are just the elements of P with two distinct vertices x and y are joined by an edge if and only if $(x, y)^l = \{0\}$, and proved some interesting results related with clique and chromatic number of this graph structure.

In [7], V. Joshi introduced the zero divisor graph $G_I(P)$ of a poset P (with 0) with respect to an ideal I, and proved $G_I(P)$ is connected with its diameter 3, also and if $G_I(P)$ contains a cycle, then the core K of $G_I(P)$ is a union of 3-cycles and 4-cycles.

In this paper, we study the zero divisor graph $G_I(P)$ of a poset P with respect to a semi-ideal I as semi-ideal need not be an ideal in poset. Let Pbe a poset and J be a semi-ideal of P. Then the graph of P with respect to the semi-ideal J, denoted by $G_J(P)$, is the graph whose vertices are the set $\{x \in P \setminus J : (x, y)^l \subseteq J \text{ for some } y \in P \setminus J\}$ with distinct vertices x and y are adjacent if and only if $(x, y)^l \subseteq J$. If $J = \{0\}$, then $G_J(P) = G(P)$, and Jis a prime semi-ideal of P if and only if $G_J(P) = \phi$. For distinct vertices xand y of a graph G, let d(x, y) be the length of the shortest path from x to y. The diameter of a connected graph is the supremum of the distances between vertices.

Following [5], let I be a semi-ideal of P. Then the extension of I by $x \in P$ is meant the set $(I : x) = \{a \in P : (a, x)^l \subseteq I\}$. For any subset S of P, we define $I_S = \{a \in P : (a, s)^l \subseteq I \text{ for all } s \in S\}$. Note that $I_S = \bigcap_{s \in S} (I : s)$, if $S = \{a\}$, then $I_S = (I : s)$. Let \mathbb{P} be the intersection of all prime semiideals of P. Then we set $Supp(a) = \bigcap_{x \in (\mathbb{P}:a)} V(x)$. In this paper the notations of graph theory are from [3], the notations of posets are from [5] and [7], and the notations of topology are from [4] and [8].

2. Topological space of Spec(P)

In this section, we associate the poset properties of P and the topological properties of Spec(P). We start this section with the following useful lemma.

Lemma 2.1. Let P be a poset and A a subset of P. Then

- (i) If $x \in A$, then $V(A) \subseteq V(x)$ and $D((\mathbb{P}:x)) \subseteq V(x)$.
- (ii) If $V(A) = \phi$, then A = P.
- (iii) $D(A) = \phi$ if and only if $A \subseteq \mathbb{P}$.
- (iv) $V(\{0\}) = Spec(P)$ and $V(P) = \phi$.
- (v) $V(I) \cup V(J) = V(I \cap J)$ for any semi-ideals I, J of P.
- (vi) $\cap_{i \in A} V(I_i) = V(\bigcup_{i \in A} I_i), I_i \text{ is a semi-ideal of } P \text{ for each } i \in A.$

Lemma 2.2. Let P be a poset. If A is a subset of Spec(P), then there exists a semi-ideal $J = \cap A$ of P with cl(A) = V(J). In particular, if A is a closed subset of Spec(P), then A = V(J) for some semi-ideal J of P.

Proof. Let A be a subset of Spec(P) and $J = \cap A$. Then it is easy to verify that $cl(A) \subseteq V(J)$ as $A \subseteq V(J)$. Let $P_1 \in V(J)$ and let D(x) be any arbitrary element in B such that $P_1 \in D(x)$. Suppose that $D(x) \cap A = \phi$. Then $x \in J$, and so $P_1 \in V(x)$, a contradiction. Thus $D(x) \cap A \neq \phi$, and hence, the result follows from Theorem 17.5 of [8].

With the help of Lemma 2.2, we have the following remark and some important characterizations of Spec(P).

Remark 2.3. Let P be a poset. Then

- (i) The closure of $I \in Spec(P)$ is V(I).
- (ii) A point $I \in Spec(P)$ is closed if and only if $I \in Max(P)$.
- (iii) If $I, J \in Spec(P)$ with cl(I) = cl(J), then I = J.

Theorem 2.4. Let S be a subset of P. Then $\mathbb{P}_S = \cap V(\mathbb{P}_S)$.

Proof. Clearly, $\mathbb{P}_S \subseteq \cap V(\mathbb{P}_S)$. Let $a \in \cap V(\mathbb{P}_S)$. Suppose on the contrary that $a \in P \setminus \mathbb{P}$. Then $(a, s)^l \notin I$ for some $I \in Spec(P)$ and some $s \in S$ which implies $a \notin I$ and $s \notin I$. So we can get $\mathbb{P}_S \subseteq I$. Thus $a \notin I \in V(\mathbb{P}_S)$, a contradiction. \Box

Theorem 2.5. Let P be a poset and $a, b \in P$. Then int $V(a) \subseteq int V(b)$ if and only if $(\mathbb{P}:a) \subseteq (\mathbb{P}:b)$.

Proof. Let int $V(a) \subseteq int V(b)$ for any $a, b \in P$ and $x \in (\mathbb{P} : a)$. Then $Spec(P) \setminus V(x) \subseteq int V(a) \subseteq int V(b) \subseteq V(b)$, which gives $(b, x)^l \subseteq \mathbb{P}$, so $x \in (\mathbb{P} : b)$. Conversely, let $(\mathbb{P} : a) \subseteq (\mathbb{P} : b)$ and let $I \in int V(a)$. Suppose $I \notin V(b)$. By Lemma 2.2, since $I \notin Spec(P) \setminus int V(a)$, then there is $0 \neq c \in P$ with $Spec(P) \setminus int V(a) \subseteq V(c)$ and $c \notin I$ which imply $(a, c)^l \subseteq \mathbb{P}$. Clearly $(b, c)^l \notin I$. Then $c \in (\mathbb{P} : a)$ and $c \notin (\mathbb{P} : b)$, a contradiction. Thus $I \in V(b)$ and hence $int V(a) \subseteq V(b)$ which implies $int V(a) \subseteq int V(b)$. **Theorem 2.6.** Let P be a poset. Then $cl(D(a)) = V((\mathbb{P} : a)) = Supp(a) = Spec(P) \setminus int V(a)$ for every $a \in P$.

Proof. It is easy to verify that $D(a) \subseteq V((\mathbb{P}:a))$ which implies $cl(D(a)) \subseteq V((\mathbb{P}:a))$. Let $I \in V((\mathbb{P}:a))$ and D(x) be any arbitrary element in B such that $I \in D(x)$. We now claim that $D(x) \cap D(a) \neq \phi$. If $I \notin D(a)$ and suppose $D(x) \cap D(a) = \phi$, then $D((x,a)^l) \subseteq D(x) \cap D(a) = \phi$ which implies $(x,a)^l \subseteq \mathbb{P}$. Then $x \in I$, a contradiction to $I \in D(x)$. Thus $D(x) \cap D(a) \neq \phi$ and hence $V((\mathbb{P}:a)) \subseteq cl(D(a))$. By the definition, we have $V((\mathbb{P}:a)) = Supp(a)$. It remains to prove that $cl(D(a)) = Spec(P) \setminus int V(a)$.

Let $I_1 \in cl(D(a))$ and suppose that $I_1 \in int V(a)$. Then there exists an open set U of Spec(P) with $I_1 \in U \subseteq V(a)$, and so $I_1 \notin Spec(P) \setminus U$, a contradiction as $Spec(P) \setminus U$ is a closed set containing D(a). So $cl(D(a)) \subseteq Spec(P) \setminus int V(a)$. Let $I_1 \in Spec(P) \setminus int V(a)$ and let D(x) be any arbitrary element in B with $I_1 \in D(x)$. Suppose that $D(x) \cap D(a) = \phi$. Then $I_1 \in D((\mathbb{P} : a)) \subseteq V(a)$, a contradiction. \Box

Lemma 2.7. Let P be a poset with greatest element e. Then Spec(P) does not contains any clopen subset.

Proof. Suppose that A is a clopen subset of Spec(P) and let $J = \cap A$ and $J_1 = \cap A^c$. Then by Lemma 2.2 A = cl(A) = V(J) and $A^c = V(J_1)$, and so $V(J) \cap V(J_1) = \phi$ which gives $e \in P = J \cup J_1$, a contradiction.

Lemma 2.8. Let P be a poset with greatest element e. If $F \subseteq Spec(P)$ is a closed set and D(K) is an open set in Spec(P) satisfying $F \cap Max(P) \subseteq D(K)$, then $F \subseteq D(K)$.

Proof. Suppose that there is $I \in F$ with $I \notin D(K)$. Then $K \cup L \subseteq I$, since F = V(L) for some semi-ideal L of P. Hence, each maximal semi-ideal M containing I is also in F. Then $M \in F \cap Max(P)$, and so $M \in D(K)$, a contradiction.

Theorem 2.9. Let P be a poset with greatest element e. Then

- (i) Max(P) is a compact T_1 subspace.
- (ii) If Spec(P) is normal, then Max(P) is a Hausdorff space.

Proof. (i) Let $B = \{D(s_i) : s_i \in J\}$ be the basis of P for any subset J of P, and suppose that $Max(P) = (\bigcup_{s_i \in J} D(s_i)) \cap Max(P)$. Then $\phi = \bigcap_{s_i \in J} (Max(P) \setminus D(s_i)) = (\bigcap_{s_i \in J} V(s_i)) \cap Max(P) = V(\bigcup_{s_i \in J} (s_i)^l) \cap Max(P)$ which implies $e \in (s_i)^l$ and $e = s_i$ for some $s_i \in J$. So $Max(P) = D(s_i)$. Let M_1 and M_2 be two distinct elements in Max(P). Then $M_1 \in D(M_2)$ and $M_2 \in D(M_1)$, and so Max(P) is a T_1 space.

(ii) Let M_1 and M_2 be distinct elements in Max(P). Then $\{M_1\}$ and $\{M_2\}$ are closed subsets in both Spec(P) and Max(P). If Spec(P) is normal, then there exist disjoint open sets D(I) and D(J) such that $\{M_1\} \subseteq D(I)$ and $\{M_2\} \subseteq D(J)$ for some semi-ideals I and J of P, respectively. So, $M_1 \in$

 $D(I) \cap Max(P)$, and $M_2 \in D(J) \cap Max(P)$, which imply Max(P) is a Hausdorff space.

3. Properties of semi-ideal-based zero-divisor graphs

In this section, we associate the poset properties of P and the graph properties of semi-ideal-based zero-divisor graphs of poset. Although the proof of the following three theorems are just smilar of that for Theorem 2.4, Lemma 2.12 and Theorem 2.13 given in [7] to semi-ideal I of P.

Theorem 3.1 ([7]). Let I be a semi-ideal of P. Then $G_I(P)$ is connected and $diam(G_I(P)) \leq 3$.

Theorem 3.2 ([7]). Let I be a semi-ideal of P and if a - x - b is a path in $G_I(P)$, then either $I \cup \{x\}$ is a semi-ideal of P or a - x - b is contained in a cycle of length ≤ 4 .

In view of above theorem, we have the following corollary.

Corollary 3.3. Let $|G_I(P)| \ge 3$ and $I \cup \{x\}$ be not a semi-ideal of P for any $x \notin I$. Then any edge in $G_I(P)$ is contained in a cycle of length ≤ 4 , and therefore $G_I(P)$ is a union of triangles and squares.

Theorem 3.4 ([7]). Let I be a semi-ideal of P. If $G_I(P)$ contains a cycle, then the core K of $G_I(P)$ is a union of triangles and rectangles. Moreover, any vertex in $G_I(P)$ is either a vertex of the core K of $G_I(P)$ or else is an end vertex of $G_I(P)$.

Lemma 3.5. Let I be a semi-ideal of P. Then a pentagon or hexagon can not be a $G_I(P)$.

Proof. Suppose that $G_I(P)$ is a - b - c - d - e - a, a pentagon. Then by Theorem 3.2, $I \cup \{a\}$ is a semi-ideal of P. Then in the pentagon, $(a, b)^l \subseteq I$ and $(a, e)^l \subseteq I$. Since $I \cup \{a\}$ is a semi-ideal, and $(a, c)^l \notin I$, we have $a \leq c$. Similarly, we can show that $a \leq d$. Thus $a \in (c, d)^l \subseteq I$, a contradiction to $a \notin I$. The proof for the hexagon is the same. \Box

Theorem 3.6. If $I \cup \{x\}$ is not a semi-ideal of P for any $x \in P \setminus I$ and $|G_I(P)| \geq 3$, then every pair of vertices in $G_I(P)$ is contained in a cycle of length ≤ 6 .

Proof. Let $a, b \in G_I(P)$. If $(a, b)^l \subseteq I$, then a - b is an edge of triangles or rectangles by Corollary 3.3. If a - x - b is a path in $G_I(P)$, then it is contained in a cycle of length ≤ 4 . If a - x - y - b is a path in $G_I(P)$, then we find cycles a - x - y - c - a and b - y - x - d - b where $c \neq x$ and $d \neq y$. This gives cycle a - x - d - b - y - c - a of length 6.

Lemma 3.7. Let P be a poset and let $a, b \in G_{\mathbb{P}}(P)$. Then

(i) $Supp(a) \cup Supp(b) \neq Spec(P)$ if and only if $Supp(a) \cup Supp(b) \subseteq V(c)$ for some $c \in G_{\mathbb{P}}(P)$. (ii) $D(a) \cap D(b) \neq \phi$ if and only if there exists $c \in G_{\mathbb{P}}(P)$ such that $\phi \neq D(a) \cap D(b) \subseteq V(c)$.

Proof. (i) Suppose $Supp(a) \cup Supp(b) \neq Spec(P)$. Then there exists an element $P \in Spec(P)$ with $x, y \notin P$ for some $x \in (\mathbb{P} : a)$ and $y \in (\mathbb{P} : b)$. So $(x, y)^l \notin \mathbb{P}$. So there exists $t \in (x, y)^l$ with $t \notin \mathbb{P}$. It is easy to verify that $t \in G_{\mathbb{P}}(P)$ and $Supp(a) \cup Supp(b) \subseteq V(t)$. Conversely, let $Supp(a) \cup Supp(b) \subseteq V(c)$ for some $c \in G_{\mathbb{P}}(P)$ and suppose that $Supp(a) \cup Supp(b) = Spec(P)$. Then $c \in \mathbb{P}$, a contradiction. Hence, $Supp(a) \cup Supp(b) \neq Spec(P)$.

(ii) Obvious.

Now by Theorem 3.1, and Lemma 3.7, we have the following characterizations of the diameter of $G_{\mathbb{P}}(P)$.

Theorem 3.8. Let P be a poset and let $a, b \in G_{\mathbb{P}}(P)$ be distinct elements. Then

- (i) For any $c \in G_{\mathbb{P}}(P)$, we have c is adjacent to both a and b if and only if $Supp(a) \cup Supp(b) \subseteq V(c)$.
- (ii) d(a,b) = 1 if and only if $D(a) \cap D(b) = \phi$.
- (iii) d(a,b) = 2 if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) \neq Spec(P)$.
- (iv) d(a,b) = 3 if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) = Spec(P)$.

Proof. (i) and (ii) are trivial.

(iii) Let $a, b \in G_{\mathbb{P}}(P)$. Then d(a, b) = 2 if and only if $(a, b)^l \notin \mathbb{P}$ and there exists $c \in G_{\mathbb{P}}(P)$ such that c is adjacent to both a and b if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) \subseteq V(c)$ if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) \neq Spec(P)$ by Lemma 3.7.

(iv) By Theorem 3.1, d(a, b) = 3 if and only if $d(a, b) \neq 1, 2$ if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) = Spec(P)$ by (i) and (ii).

Theorem 3.9. Let I be a semi-ideal of P and let $a \in G_I(P)$. If a is adjacent to every other vertex in $G_I(P)$, then (I:a) is a prime semi-ideal of P.

Proof. Let $(x, y)^l \subseteq (I : a)$ for $x \in P$. Then $(a, x, y)^l \subseteq I$ and so $x \in (I : t)$ for all $t \in (y, a)^l$. Suppose that $y \notin (I : a)$. Then there exists $t_1 \in (y, a)^l$ such that $t_1 \notin I$. We now claim that $I_{t_1} = I_a$. Clearly $(I : a) \subseteq (I : t_1)$. Now let $p \in (I : t_1)$. If $p \in I$, then $p \in (I : a)$. Otherwise $p \notin I$. It is clear that $p \in G_{\mathbb{P}}(P)$. Since a is adjacent to every vertex, therefore $(p, a)^l \subseteq I$. So $(I : a) = (I : t_1)$. Since $x \in (I : t_1)$, we have $x \in (I : a)$.

Lemma 3.10. Let P be a poset. If $x \in P$ and (I : x) is maximal among $(I : a) = \{y \in P : (a, y)^l \subseteq I\}$, then (I : x) is a prime semi-ideal of P.

Proof. Suppose that $(a,b)^l \subseteq (I:x)$ and $a \notin (I:x)$. Then $(a,b,x)^l \subseteq I$. Let $z \in (a,x)^l \setminus I$. Then $(b,z)^l \subseteq (a,b,x)^l \subseteq I$, thus $b \in (I:z)$. Since $(I:x) \subseteq (I:z)$

84

and $z \notin I$, we have $(I : z) \neq P$. By the maximality of (I : x), we have (I : x) = (I : z), hence $b \in (I : z) = (I : x)$.

Acknowledgments. The authors express their sincere thanks to the referee for his/her valuable comments and suggestions which improve the paper a lot.

References

- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447.
- [2] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226.
- [3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976.
- [4] R. Engelking, General Topology, Heldermann-Verlag, 2000.
- [5] R. Halaš, On extensions of ideals in posets, Discrete Math. 308 (2008), no. 21, 4972-4977.
- [6] R. Halaš and M. Jukl, On Beck's coloring of posets, Discrete Math. 309 (2009), no. 13, 4584–4589.
- [7] V. Joshi, Zero divisor graph of a poset with respect to an ideal, Order: DOI 10.1007/s11083-011-9216-2.
- [8] J. R. Munkres, Topology, Prentice-Hall of Indian, New Delhi, 2005.
- [9] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), no. 9, 4425–4443.
- [10] P. V. Venkatanarasimhan, Semi-ideals in posets, Math. Ann. 185 (1970), 338-348.

BALASUBRAMANIAN ELAVARASAN DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCE AND HUMANITIES KARUNYA UNIVERSITY COIMBATORE-641 114, TAMILNADU, INDIA *E-mail address*: belavarasan@gmail.com

KASI PORSELVI DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCE AND HUMANITIES KARUNYA UNIVERSITY COIMBATORE-641 114, TAMILNADU, INDIA *E-mail address*: porselvi94@yahoo.co.in