AN IDEAL - BASED ZERO-DIVISOR GRAPH OF POSETS

Balasubramanian Elavarasan and Kasi Porselvi

Abstract

The structure of a poset P with smallest element 0 is looked at from two view points. Firstly, with respect to the Zariski topology, it is shown that $\operatorname{Spec}(P)$, the set of all prime semi-ideals of P, is a compact space and $\operatorname{Max}(P)$, the set of all maximal semi-ideals of P, is a compact T_{1} subspace. Various other topological properties are derived. Secondly, we study the semi-ideal-based zero-divisor graph structure of poset P, denoted by $G_{I}(P)$, and characterize its diameter.

1. Preliminaries

Throughout this paper, (P, \leq) denotes a poset with a least element 0 , and all prime and maximal semi-ideals of P are assumed to be proper. For $M \subseteq P$, let $(M)^{l}:=\{x \in P: x \leq m$ for all $m \in M\}$ denote the lower cone of M in P, and dually let $(M)^{u}:=\{x \in P: m \leq x$ for all $m \in M\}$ be the upper cone of M in P. For $A, B \subseteq P$, we write $(A, B)^{l}$ instead of $(A \cup B)^{l}$ and dually for the upper cones. If $M=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is finite, then we use the notation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{l}$ instead of $\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)^{l}$ (and dually). We use $\operatorname{Spec}(P)$ and $\operatorname{Max}(P)$ for the spectrum of prime semi-ideals and the maximal semi-ideals of P, respectively.

Following [10], a nonempty subset I of P, I is called a semi-ideal of P if $b \in I$ and $a \leq b$, then $a \in I$. A proper semi-ideal I of P is called prime if for any $a, b \in P,(a, b)^{l} \subseteq I$ implies $a \in I$ or $b \in I$. In [5], Radomir Halaš, in which he has used the term ideals for the semi-ideals of a poset, defined a class of n-prime semi-ideals in posets, a semi-ideal I is called n-prime if for pairwise distinct elements $x_{1}, x_{2}, \ldots, x_{n} \in P$, if $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{l} \subseteq I$, then at least $(n-1)$ of n-subsets $\left(x_{2}, x_{3}, \ldots, x_{n}\right)^{l},\left(x_{1}, x_{3}, \ldots, x_{n}\right)^{l}, \ldots,\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)^{l}$ is a subset of I. From Theorem 3 of [5], we can observe that every prime semi-ideal of P is n-prime. For any semi-ideal J of P and $a \in P$, we define $V(a)=\{I \in$ $\operatorname{Spec}(P): a \in I\}$ and $D(I)=\operatorname{Spec}(P) \backslash V(I)$. Let $V(J)=\cap_{a \in J} V(a)$. Then $F=\{V(J): J$ is an semi-ideal of $P\}$ is closed under finite unions and arbitrary intersections, so that there is a topology on $\operatorname{Spec}(P)$ for which F is

Received May 16, 2011; Revised November 23, 2011.
2010 Mathematics Subject Classification. 05C99, 06B35.
Key words and phrases. posets, semi-ideals, prime semi-ideals, zero-divisor graph.
the family of closed sets. This is called the Zariski topology. It is easy to see that, for any subset A of $P,(A)^{l}$ is a semi-ideal of P. If $A=\{a\}$, for any $a \in P$, then $(a)^{l}$ is the smallest semi-ideal containing a, and also $V(a)=V\left((a)^{l}\right)$. Also $B=\{D(a): a \in P\}$ form a basis for a topology on $\operatorname{Spec}(P)$. It is also clear that $\operatorname{Max}(P) \subseteq \operatorname{Spec}(P)$.

In [2], I. Beck introduced the idea of a zero-divisor graph of a commutative ring. Let the zero-divisors of R be the vertices and connect two vertices a and b by an edge in case $a b=0$. Later in [1], D. F. Anderson and P. S. Livingston have considered only non-zero zero-divisors as vertices of the zerodivisor graph of R, denoted by $\Gamma(R)$, is the (undirected) graph with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$, the set of non-zero zero-divisors of R, and for distinct $x, y \in Z(R)^{*}$, the vertices x and y are adjacent if and only if $x y=0$. In [9], S. P. Redmond generalized this notion by replacing elements whose product is zero with elements whose product lies in some ideal I of R.

In [6], R. Halaš and M. Jukl have introduced the concept of a graph structure of posets, let (P, \leq) be a poset with 0 . Then the zero-divisor graph of P, denoted by $G(P)$, is an undirected graph whose vertices are just the elements of P with two distinct vertices x and y are joined by an edge if and only if $(x, y)^{l}=\{0\}$, and proved some interesting results related with clique and chromatic number of this graph structure.

In [7], V. Joshi introduced the zero divisor graph $G_{I}(P)$ of a poset P (with 0) with respect to an ideal I, and proved $G_{I}(P)$ is connected with its diameter 3, also and if $G_{I}(P)$ contains a cycle, then the core K of $G_{I}(P)$ is a union of 3 -cycles and 4-cycles.

In this paper, we study the zero divisor graph $G_{I}(P)$ of a poset P with respect to a semi-ideal I as semi-ideal need not be an ideal in poset. Let P be a poset and J be a semi-ideal of P. Then the graph of P with respect to the semi-ideal J, denoted by $G_{J}(P)$, is the graph whose vertices are the set $\left\{x \in P \backslash J:(x, y)^{l} \subseteq J\right.$ for some $\left.y \in P \backslash J\right\}$ with distinct vertices x and y are adjacent if and only if $(x, y)^{l} \subseteq J$. If $J=\{0\}$, then $G_{J}(P)=G(P)$, and J is a prime semi-ideal of P if and only if $G_{J}(P)=\phi$. For distinct vertices x and y of a graph G, let $d(x, y)$ be the length of the shortest path from x to y. The diameter of a connected graph is the supremum of the distances between vertices.

Following [5], let I be a semi-ideal of P. Then the extension of I by $x \in P$ is meant the set $(I: x)=\left\{a \in P:(a, x)^{l} \subseteq I\right\}$. For any subset S of P, we define $I_{S}=\left\{a \in P:(a, s)^{l} \subseteq I\right.$ for all $\left.s \in \bar{S}\right\}$. Note that $I_{S}=\cap_{s \in S}(I: s)$, if $S=\{a\}$, then $I_{S}=(I: s)$. Let \mathbb{P} be the intersection of all prime semiideals of P. Then we set $\operatorname{Supp}(a)=\cap_{x \in(\mathbb{P}: a)} V(x)$. In this paper the notations of graph theory are from [3], the notations of posets are from [5] and [7], and the notations of topology are from [4] and [8].

2. Topological space of $\operatorname{Spec}(\boldsymbol{P})$

In this section, we associate the poset properties of P and the topological properties of $\operatorname{Spec}(P)$. We start this section with the following useful lemma.
Lemma 2.1. Let P be a poset and A a subset of P. Then
(i) If $x \in A$, then $V(A) \subseteq V(x)$ and $D((\mathbb{P}: x)) \subseteq V(x)$.
(ii) If $V(A)=\phi$, then $A=P$.
(iii) $D(A)=\phi$ if and only if $A \subseteq \mathbb{P}$.
(iv) $V(\{0\})=S p e c(P)$ and $V(P)=\phi$.
(v) $V(I) \cup V(J)=V(I \cap J)$ for any semi-ideals I, J of P.
(vi) $\cap_{i \in A} V\left(I_{i}\right)=V\left(\cup_{i \in A} I_{i}\right), I_{i}$ is a semi-ideal of P for each $i \in A$.

Lemma 2.2. Let P be a poset. If A is a subset of $\operatorname{Spec}(P)$, then there exists a semi-ideal $J=\cap A$ of P with $\operatorname{cl}(A)=V(J)$. In particular, if A is a closed subset of $\operatorname{Spec}(P)$, then $A=V(J)$ for some semi-ideal J of P.

Proof. Let A be a subset of $\operatorname{Spec}(P)$ and $J=\cap A$. Then it is easy to verify that $c l(A) \subseteq V(J)$ as $A \subseteq V(J)$. Let $P_{1} \in V(J)$ and let $D(x)$ be any arbitrary element in B such that $P_{1} \in D(x)$. Suppose that $D(x) \cap A=\phi$. Then $x \in J$, and so $P_{1} \in V(x)$, a contradiction. Thus $D(x) \cap A \neq \phi$, and hence, the result follows from Theorem 17.5 of [8].

With the help of Lemma 2.2, we have the following remark and some important characterizations of $\operatorname{Spec}(P)$.
Remark 2.3. Let P be a poset. Then
(i) The closure of $I \in \operatorname{Spec}(P)$ is $V(I)$.
(ii) A point $I \in \operatorname{Spec}(P)$ is closed if and only if $I \in \operatorname{Max}(P)$.
(iii) If $I, J \in \operatorname{Spec}(P)$ with $\operatorname{cl}(I)=\operatorname{cl}(J)$, then $I=J$.

Theorem 2.4. Let S be a subset of P. Then $\mathbb{P}_{S}=\cap V\left(\mathbb{P}_{S}\right)$.
Proof. Clearly, $\mathbb{P}_{S} \subseteq \cap V\left(\mathbb{P}_{S}\right)$. Let $a \in \cap V\left(\mathbb{P}_{S}\right)$. Suppose on the contrary that $a \in P \backslash \mathbb{P}$. Then $(a, s)^{l} \nsubseteq I$ for some $I \in \operatorname{Spec}(P)$ and some $s \in S$ which implies $a \notin I$ and $s \notin I$. So we can get $\mathbb{P}_{S} \subseteq I$. Thus $a \notin I \in V\left(\mathbb{P}_{S}\right)$, a contradiction.
Theorem 2.5. Let P be a poset and $a, b \in P$. Then int $V(a) \subseteq$ int $V(b)$ if and only if $(\mathbb{P}: a) \subseteq(\mathbb{P}: b)$.

Proof. Let int $V(a) \subseteq$ int $V(b)$ for any $a, b \in P$ and $x \in(\mathbb{P}: a)$. Then $\operatorname{Spec}(P) \backslash V(x) \subseteq$ int $V(a) \subseteq$ int $V(b) \subseteq V(b)$, which gives $(b, x)^{l} \subseteq \mathbb{P}$, so $x \in(\mathbb{P}: b)$. Conversely, let $(\mathbb{P}: a) \subseteq(\mathbb{P}: b)$ and let $I \in$ int $V(a)$. Suppose $I \notin V(b)$. By Lemma 2.2 , since $I \notin \operatorname{Spec}(P) \backslash$ int $V(a)$, then there is $0 \neq c \in P$ with $\operatorname{Spec}(P) \backslash$ int $V(a) \subseteq V(c)$ and $c \notin I$ which imply $(a, c)^{l} \subseteq \mathbb{P}$. Clearly $(b, c)^{l} \nsubseteq I$. Then $c \in(\mathbb{P}: a)$ and $c \notin(\mathbb{P}: b)$, a contradiction. Thus $I \in V(b)$ and hence int $V(a) \subseteq V(b)$ which implies int $V(a) \subseteq$ int $V(b)$.

Theorem 2.6. Let P be a poset. Then $c l(D(a))=V((\mathbb{P}: a))=\operatorname{Supp}(a)=$ $\operatorname{Spec}(P) \backslash i n t V(a)$ for every $a \in P$.
Proof. It is easy to verify that $D(a) \subseteq V((\mathbb{P}: a))$ which implies $\operatorname{cl}(D(a)) \subseteq$ $V((\mathbb{P}: a))$. Let $I \in V((\mathbb{P}: a))$ and $D(x)$ be any arbitrary element in B such that $I \in D(x)$. We now claim that $D(x) \cap D(a) \neq \phi$. If $I \notin D(a)$ and suppose $D(x) \cap D(a)=\phi$, then $D\left((x, a)^{l}\right) \subseteq D(x) \cap D(a)=\phi$ which implies $(x, a)^{l} \subseteq \mathbb{P}$. Then $x \in I$, a contradiction to $I \in D(x)$. Thus $D(x) \cap D(a) \neq \phi$ and hence $V((\mathbb{P}: a)) \subseteq c l(D(a))$. By the definition, we have $V((\mathbb{P}: a))=\operatorname{Supp}(a)$. It remains to prove that $c l(D(a))=\operatorname{Spec}(P) \backslash$ int $V(a)$.

Let $I_{1} \in c l(D(a))$ and suppose that $I_{1} \in \operatorname{int} V(a)$. Then there exists an open set U of $\operatorname{Spec}(P)$ with $I_{1} \in U \subseteq V(a)$, and so $I_{1} \notin \operatorname{Spec}(P) \backslash U$, a contradiction as $\operatorname{Spec}(P) \backslash U$ is a closed set containing $D(a)$. So $c l(D(a)) \subseteq \operatorname{Spec}(P) \backslash i n t V(a)$. Let $I_{1} \in \operatorname{Spec}(P) \backslash$ int $V(a)$ and let $D(x)$ be any arbitrary element in B with $I_{1} \in D(x)$. Suppose that $D(x) \cap D(a)=\phi$. Then $I_{1} \in D((\mathbb{P}: a)) \subseteq V(a)$, a contradiction.

Lemma 2.7. Let P be a poset with greatest element e. Then Spec (P) does not contains any clopen subset.

Proof. Suppose that A is a clopen subset of $\operatorname{Spec}(P)$ and let $J=\cap A$ and $J_{1}=\cap A^{c}$. Then by Lemma $2.2 A=\operatorname{cl}(A)=V(J)$ and $A^{c}=V\left(J_{1}\right)$, and so $V(J) \cap V\left(J_{1}\right)=\phi$ which gives $e \in P=J \cup J_{1}$, a contradiction.

Lemma 2.8. Let P be a poset with greatest element e. If $F \subseteq \operatorname{Spec}(P)$ is a closed set and $D(K)$ is an open set in $\operatorname{Spec}(P)$ satisfying $F \cap \operatorname{Max}(P) \subseteq D(K)$, then $F \subseteq D(K)$.

Proof. Suppose that there is $I \in F$ with $I \notin D(K)$. Then $K \cup L \subseteq I$, since $F=V(L)$ for some semi-ideal L of P. Hence, each maximal semi-ideal M containing I is also in F. Then $M \in F \cap \operatorname{Max}(P)$, and so $M \in D(K)$, a contradiction.

Theorem 2.9. Let P be a poset with greatest element e. Then
(i) $\operatorname{Max}(P)$ is a compact T_{1} subspace.
(ii) If $\operatorname{Spec}(P)$ is normal, then $\operatorname{Max}(P)$ is a Hausdorff space.

Proof. (i) Let $B=\left\{D\left(s_{i}\right): s_{i} \in J\right\}$ be the basis of P for any subset J of P, and suppose that $\operatorname{Max}(P)=\left(\cup_{s_{j} \in J} D\left(s_{i}\right)\right) \cap \operatorname{Max}(P)$. Then $\phi=$ $\cap_{s_{i} \in J}\left(\operatorname{Max}(P) \backslash D\left(s_{i}\right)\right)=\left(\cap_{s_{i} \in J} V\left(s_{i}\right)\right) \cap \operatorname{Max}(P)=V\left(\cup_{s_{i} \in J}\left(s_{i}\right)^{l}\right) \cap \operatorname{Max}(P)$ which implies $e \in\left(s_{i}\right)^{l}$ and $e=s_{i}$ for some $s_{i} \in J$. So $\operatorname{Max}(P)=D\left(s_{i}\right)$. Let M_{1} and M_{2} be two distinct elements in $\operatorname{Max}(P)$. Then $M_{1} \in D\left(M_{2}\right)$ and $M_{2} \in D\left(M_{1}\right)$, and so $\operatorname{Max}(P)$ is a T_{1} space.
(ii) Let M_{1} and M_{2} be distinct elements in $\operatorname{Max}(P)$. Then $\left\{M_{1}\right\}$ and $\left\{M_{2}\right\}$ are closed subsets in both $\operatorname{Spec}(P)$ and $\operatorname{Max}(P)$. If $\operatorname{Spec}(P)$ is normal, then there exist disjoint open sets $D(I)$ and $D(J)$ such that $\left\{M_{1}\right\} \subseteq D(I)$ and $\left\{M_{2}\right\} \subseteq D(J)$ for some semi-ideals I and J of P, respectively. So, $M_{1} \in$
$D(I) \cap \operatorname{Max}(P)$, and $M_{2} \in D(J) \cap \operatorname{Max}(P)$, which imply $\operatorname{Max}(P)$ is a Hausdorff space.

3. Properties of semi-ideal-based zero-divisor graphs

In this section, we associate the poset properties of P and the graph properties of semi-ideal-based zero-divisor graphs of poset. Although the proof of the following three theorems are just smilar of that for Theorem 2.4, Lemma 2.12 and Theorem 2.13 given in [7] to semi-ideal I of P.

Theorem 3.1 ([7]). Let I be a semi-ideal of P. Then $G_{I}(P)$ is connected and $\operatorname{diam}\left(G_{I}(P)\right) \leq 3$.
Theorem 3.2 ([7]). Let I be a semi-ideal of P and if $a-x-b$ is a path in $G_{I}(P)$, then either $I \cup\{x\}$ is a semi-ideal of P or $a-x-b$ is contained in a cycle of length ≤ 4.

In view of above theorem, we have the following corollary.
Corollary 3.3. Let $\left|G_{I}(P)\right| \geq 3$ and $I \cup\{x\}$ be not a semi-ideal of P for any $x \notin I$. Then any edge in $G_{I}(P)$ is contained in a cycle of length ≤ 4, and therefore $G_{I}(P)$ is a union of triangles and squares.
Theorem 3.4 ([7]). Let I be a semi-ideal of P. If $G_{I}(P)$ contains a cycle, then the core K of $G_{I}(P)$ is a union of triangles and rectangles. Moreover, any vertex in $G_{I}(P)$ is either a vertex of the core K of $G_{I}(P)$ or else is an end vertex of $G_{I}(P)$.
Lemma 3.5. Let I be a semi-ideal of P. Then a pentagon or hexagon can not be a $G_{I}(P)$.

Proof. Suppose that $G_{I}(P)$ is $a-b-c-d-e-a$, a pentagon. Then by Theorem 3.2, $I \cup\{a\}$ is a semi-ideal of P. Then in the pentagon, $(a, b)^{l} \subseteq I$ and $(a, e)^{l} \subseteq I$. Since $I \cup\{a\}$ is a semi-ideal, and $(a, c)^{l} \nsubseteq I$, we have $a \leq c$. Similarly, we can show that $a \leq d$. Thus $a \in(c, d)^{l} \subseteq I$, a contradiction to $a \notin I$. The proof for the hexagon is the same.

Theorem 3.6. If $I \cup\{x\}$ is not a semi-ideal of P for any $x \in P \backslash I$ and $\left|G_{I}(P)\right| \geq 3$, then every pair of vertices in $G_{I}(P)$ is contained in a cycle of length ≤ 6.
Proof. Let $a, b \in G_{I}(P)$. If $(a, b)^{l} \subseteq I$, then $a-b$ is an edge of triangles or rectangles by Corollary 3.3. If $a-x-b$ is a path in $G_{I}(P)$, then it is contained in a cycle of length ≤ 4. If $a-x-y-b$ is a path in $G_{I}(P)$, then we find cycles $a-x-y-c-a$ and $b-y-x-d-b$ where $c \neq x$ and $d \neq y$. This gives cycle $a-x-d-b-y-c-a$ of length 6 .

Lemma 3.7. Let P be a poset and let $a, b \in G_{\mathbb{P}}(P)$. Then
(i) $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(P)$ if and only if $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \subseteq V(c)$ for some $c \in G_{\mathbb{P}}(P)$.
(ii) $D(a) \cap D(b) \neq \phi$ if and only if there exists $c \in G_{\mathbb{P}}(P)$ such that $\phi \neq$ $D(a) \cap D(b) \subseteq V(c)$.

Proof. (i) Suppose $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(P)$. Then there exists an element $P \in \operatorname{Spec}(P)$ with $x, y \notin P$ for some $x \in(\mathbb{P}: a)$ and $y \in(\mathbb{P}: b)$. So $(x, y)^{l} \nsubseteq \mathbb{P}$. So there exists $t \in(x, y)^{l}$ with $t \notin \mathbb{P}$. It is easy to verify that $t \in G_{\mathbb{P}}(P)$ and $\operatorname{Supp}(a) \cup S u p p(b) \subseteq V(t)$. Conversely, let $\operatorname{Supp}(a) \cup S u p p(b) \subseteq V(c)$ for some $c \in G_{\mathbb{P}}(P)$ and suppose that $\operatorname{Supp}(a) \cup \operatorname{Supp}(b)=\operatorname{Spec}(P)$. Then $c \in \mathbb{P}$, a contradiction. Hence, $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(P)$.
(ii) Obvious.

Now by Theorem 3.1, and Lemma 3.7, we have the following characterizations of the diameter of $G_{\mathbb{P}}(P)$.

Theorem 3.8. Let P be a poset and let $a, b \in G_{\mathbb{P}}(P)$ be distinct elements. Then
(i) For any $c \in G_{\mathbb{P}}(P)$, we have c is adjacent to both a and b if and only if $\operatorname{Supp}(a) \cup S u p p(b) \subseteq V(c)$.
(ii) $d(a, b)=1$ if and only if $D(a) \cap D(b)=\phi$.
(iii) $d(a, b)=2$ if and only if $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup S u p p(b) \neq$ $\operatorname{Spec}(P)$.
(iv) $d(a, b)=3$ if and only if $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b)=$ $\operatorname{Spec}(P)$.

Proof. (i) and (ii) are trivial.
(iii) Let $a, b \in G_{\mathbb{P}}(P)$. Then $d(a, b)=2$ if and only if $(a, b)^{l} \nsubseteq \mathbb{P}$ and there exists $c \in G_{\mathbb{P}}(P)$ such that c is adjacent to both a and b if and only if $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup S u p p(b) \subseteq V(c)$ if and only if $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(P)$ by Lemma 3.7.
(iv) By Theorem 3.1, $d(a, b)=3$ if and only if $d(a, b) \neq 1,2$ if and only if $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b)=\operatorname{Spec}(P)$ by (i) and (ii).

Theorem 3.9. Let I be a semi-ideal of P and let $a \in G_{I}(P)$. If a is adjacent to every other vertex in $G_{I}(P)$, then $(I: a)$ is a prime semi-ideal of P.
Proof. Let $(x, y)^{l} \subseteq(I: a)$ for $x \in P$. Then $(a, x, y)^{l} \subseteq I$ and so $x \in(I: t)$ for all $t \in(y, a)^{l}$. Suppose that $y \notin(I: a)$. Then there exists $t_{1} \in(y, a)^{l}$ such that $t_{1} \notin I$. We now claim that $I_{t_{1}}=I_{a}$. Clearly $(I: a) \subseteq\left(I: t_{1}\right)$. Now let $p \in\left(I: t_{1}\right)$. If $p \in I$, then $p \in(I: a)$. Otherwise $p \notin I$. It is clear that $p \in G_{\mathbb{P}}(P)$. Since a is adjacent to every vertex, therefore $(p, a)^{l} \subseteq I$. So $(I: a)=\left(I: t_{1}\right)$. Since $x \in\left(I: t_{1}\right)$, we have $x \in(I: a)$.

Lemma 3.10. Let P be a poset. If $x \in P$ and $(I: x)$ is maximal among $(I: a)=\left\{y \in P:(a, y)^{l} \subseteq I\right\}$, then $(I: x)$ is a prime semi-ideal of P.
Proof. Suppose that $(a, b)^{l} \subseteq(I: x)$ and $a \notin(I: x)$. Then $(a, b, x)^{l} \subseteq I$. Let $z \in(a, x)^{l} \backslash I$. Then $(b, z)^{l} \subseteq(a, b, x)^{l} \subseteq I$, thus $b \in(I: z)$. Since $(I: x) \subseteq(I: z)$
and $z \notin I$, we have $(I: z) \neq P$. By the maximality of $(I: x)$, we have $(I: x)=(I: z)$, hence $b \in(I: z)=(I: x)$.

Acknowledgments. The authors express their sincere thanks to the referee for his/her valuable comments and suggestions which improve the paper a lot.

References

[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[2] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976.
[4] R. Engelking, General Topology, Heldermann-Verlag, 2000.
[5] R. Halaš, On extensions of ideals in posets, Discrete Math. 308 (2008), no. 21, 4972-4977.
[6] R. Halaš and M. Jukl, On Beck's coloring of posets, Discrete Math. 309 (2009), no. 13, 4584-4589.
[7] V. Joshi, Zero divisor graph of a poset with respect to an ideal, Order: DOI 10.1007/s11083-011-9216-2.
[8] J. R. Munkres, Topology, Prentice-Hall of Indian, New Delhi, 2005.
[9] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), no. 9, 4425-4443.
[10] P. V. Venkatanarasimhan, Semi-ideals in posets, Math. Ann. 185 (1970), 338-348.
Balasubramanian Elavarasan
Department of Mathematics
School of Science and Humanities
Karunya University
Coimbatore-641 114, Tamilnadu, India
E-mail address: belavarasan@gmail.com
Kasi Porselvi
Department of Mathematics
School of Science and Humanities
Karunya University
Coimbatore-641 114, Tamilnadu, India
E-mail address: porselvi94@yahoo.co.in

