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AN IDEAL - BASED ZERO-DIVISOR GRAPH OF POSETS

Balasubramanian Elavarasan and Kasi Porselvi

Abstract. The structure of a poset P with smallest element 0 is looked
at from two view points. Firstly, with respect to the Zariski topology, it
is shown that Spec(P ), the set of all prime semi-ideals of P, is a compact
space and Max(P ), the set of all maximal semi-ideals of P, is a compact
T1 subspace. Various other topological properties are derived. Secondly,
we study the semi-ideal-based zero-divisor graph structure of poset P,

denoted by GI (P ), and characterize its diameter.

1. Preliminaries

Throughout this paper, (P,≤) denotes a poset with a least element 0, and
all prime and maximal semi-ideals of P are assumed to be proper. For M ⊆ P,
let (M)l := {x ∈ P : x ≤ m for all m ∈ M} denote the lower cone of
M in P, and dually let (M)u := {x ∈ P : m ≤ x for all m ∈ M} be the
upper cone of M in P. For A,B ⊆ P, we write (A,B)l instead of (A ∪B)l and
dually for the upper cones. If M = {x1, x2, . . . , xn} is finite, then we use the
notation (x1, x2, . . . , xn)

l instead of ({x1, x2, . . . , xn})
l (and dually). We use

Spec(P ) and Max(P ) for the spectrum of prime semi-ideals and the maximal
semi-ideals of P, respectively.

Following [10], a nonempty subset I of P, I is called a semi-ideal of P if b ∈ I
and a ≤ b, then a ∈ I. A proper semi-ideal I of P is called prime if for any
a, b ∈ P, (a, b)l ⊆ I implies a ∈ I or b ∈ I. In [5], Radomir Halaš, in which he
has used the term ideals for the semi-ideals of a poset, defined a class of n-prime
semi-ideals in posets, a semi-ideal I is called n-prime if for pairwise distinct
elements x1, x2, . . . , xn ∈ P, if (x1, x2, . . . , xn)

l ⊆ I, then at least (n − 1) of
n-subsets (x2, x3, . . . , xn)

l, (x1, x3, . . . , xn)
l, . . . , (x1, x2, . . . , xn−1)

l is a subset
of I. From Theorem 3 of [5], we can observe that every prime semi-ideal of
P is n-prime. For any semi-ideal J of P and a ∈ P, we define V (a) = {I ∈
Spec(P ) : a ∈ I} and D(I) = Spec(P )\V (I). Let V (J) = ∩a∈JV (a). Then
F = {V (J) : J is an semi-ideal of P} is closed under finite unions and
arbitrary intersections, so that there is a topology on Spec(P ) for which F is
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the family of closed sets. This is called the Zariski topology. It is easy to see
that, for any subset A of P, (A)l is a semi-ideal of P. If A = {a}, for any a ∈ P,
then (a)l is the smallest semi-ideal containing a, and also V (a) = V ((a)l). Also
B = {D(a) : a ∈ P} form a basis for a topology on Spec(P ). It is also clear
that Max(P ) ⊆ Spec(P ).

In [2], I. Beck introduced the idea of a zero-divisor graph of a commutative
ring. Let the zero-divisors of R be the vertices and connect two vertices a
and b by an edge in case ab = 0. Later in [1], D. F. Anderson and P. S.
Livingston have considered only non-zero zero-divisors as vertices of the zero-
divisor graph of R, denoted by Γ(R), is the (undirected) graph with vertices
Z(R)∗ = Z(R)\{0}, the set of non-zero zero-divisors of R, and for distinct
x, y ∈ Z(R)∗, the vertices x and y are adjacent if and only if xy = 0. In [9],
S. P. Redmond generalized this notion by replacing elements whose product is
zero with elements whose product lies in some ideal I of R.

In [6], R. Halaš and M. Jukl have introduced the concept of a graph structure
of posets, let (P,≤) be a poset with 0. Then the zero-divisor graph of P, denoted
by G(P ), is an undirected graph whose vertices are just the elements of P with
two distinct vertices x and y are joined by an edge if and only if (x, y)l = {0},
and proved some interesting results related with clique and chromatic number
of this graph structure.

In [7], V. Joshi introduced the zero divisor graph GI(P ) of a poset P (with
0) with respect to an ideal I, and proved GI(P ) is connected with its diameter
3, also and if GI(P ) contains a cycle, then the core K of GI(P ) is a union of
3-cycles and 4-cycles.

In this paper, we study the zero divisor graph GI(P ) of a poset P with
respect to a semi-ideal I as semi-ideal need not be an ideal in poset. Let P
be a poset and J be a semi-ideal of P. Then the graph of P with respect to
the semi-ideal J, denoted by GJ (P ), is the graph whose vertices are the set
{x ∈ P\J : (x, y)l ⊆ J for some y ∈ P\J} with distinct vertices x and y are
adjacent if and only if (x, y)l ⊆ J. If J = {0}, then GJ (P ) = G(P ), and J
is a prime semi-ideal of P if and only if GJ (P ) = φ. For distinct vertices x
and y of a graph G, let d(x, y) be the length of the shortest path from x to y.
The diameter of a connected graph is the supremum of the distances between
vertices.

Following [5], let I be a semi-ideal of P. Then the extension of I by x ∈ P
is meant the set (I : x) = {a ∈ P : (a, x)l ⊆ I}. For any subset S of P, we
define IS = {a ∈ P : (a, s)l ⊆ I for all s ∈ S}. Note that IS = ∩s∈S(I : s),
if S = {a}, then IS = (I : s). Let P be the intersection of all prime semi-
ideals of P. Then we set Supp(a) = ∩x∈(P:a)V (x). In this paper the notations
of graph theory are from [3], the notations of posets are from [5] and [7], and
the notations of topology are from [4] and [8].
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2. Topological space of Spec(P )

In this section, we associate the poset properties of P and the topological
properties of Spec(P ). We start this section with the following useful lemma.

Lemma 2.1. Let P be a poset and A a subset of P. Then

(i) If x ∈ A, then V (A) ⊆ V (x) and D((P : x)) ⊆ V (x).
(ii) If V (A) = φ, then A = P.
(iii) D(A) = φ if and only if A ⊆ P.
(iv) V ({0}) = Spec(P ) and V (P ) = φ.
(v) V (I) ∪ V (J) = V (I ∩ J) for any semi-ideals I, J of P.
(vi) ∩i∈AV (Ii) = V (∪i∈AIi), Ii is a semi-ideal of P for each i ∈ A.

Lemma 2.2. Let P be a poset. If A is a subset of Spec(P ), then there exists

a semi-ideal J = ∩A of P with cl(A) = V (J). In particular, if A is a closed

subset of Spec(P ), then A = V (J) for some semi-ideal J of P.

Proof. Let A be a subset of Spec(P ) and J = ∩A. Then it is easy to verify
that cl(A) ⊆ V (J) as A ⊆ V (J). Let P1 ∈ V (J) and let D(x) be any arbitrary
element in B such that P1 ∈ D(x). Suppose that D(x) ∩ A = φ. Then x ∈ J,
and so P1 ∈ V (x), a contradiction. Thus D(x) ∩ A 6= φ, and hence, the result
follows from Theorem 17.5 of [8]. �

With the help of Lemma 2.2, we have the following remark and some im-
portant characterizations of Spec(P ).

Remark 2.3. Let P be a poset. Then

(i) The closure of I ∈ Spec(P ) is V (I).
(ii) A point I ∈ Spec(P ) is closed if and only if I ∈ Max(P ).
(iii) If I, J ∈ Spec(P ) with cl(I) = cl(J), then I = J.

Theorem 2.4. Let S be a subset of P. Then PS = ∩V (PS).

Proof. Clearly, PS ⊆ ∩V (PS). Let a ∈ ∩V (PS). Suppose on the contrary that
a ∈ P\P. Then (a, s)l * I for some I ∈ Spec(P ) and some s ∈ S which
implies a /∈ I and s /∈ I. So we can get PS ⊆ I. Thus a /∈ I ∈ V (PS), a
contradiction. �

Theorem 2.5. Let P be a poset and a, b ∈ P . Then int V (a) ⊆ int V (b) if

and only if (P : a) ⊆ (P : b).

Proof. Let int V (a) ⊆ int V (b) for any a, b ∈ P and x ∈ (P : a). Then
Spec(P )\V (x) ⊆ int V (a) ⊆ int V (b) ⊆ V (b), which gives (b, x)l ⊆ P, so
x ∈ (P : b). Conversely, let (P : a) ⊆ (P : b) and let I ∈ int V (a). Suppose
I /∈ V (b). By Lemma 2.2, since I /∈ Spec(P )\int V (a), then there is 0 6= c ∈ P
with Spec(P )\int V (a) ⊆ V (c) and c /∈ I which imply (a, c)l ⊆ P. Clearly
(b, c)l * I. Then c ∈ (P : a) and c /∈ (P : b), a contradiction. Thus I ∈ V (b)
and hence int V (a) ⊆ V (b) which implies int V (a) ⊆ int V (b). �
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Theorem 2.6. Let P be a poset. Then cl(D(a)) = V ((P : a)) = Supp(a) =
Spec(P )\int V (a) for every a ∈ P.

Proof. It is easy to verify that D(a) ⊆ V ((P : a)) which implies cl(D(a)) ⊆
V ((P : a)). Let I ∈ V ((P : a)) and D(x) be any arbitrary element in B such
that I ∈ D(x). We now claim that D(x) ∩D(a) 6= φ. If I /∈ D(a) and suppose
D(x)∩D(a) = φ, then D((x, a)l) ⊆ D(x)∩D(a) = φ which implies (x, a)l ⊆ P.
Then x ∈ I, a contradiction to I ∈ D(x). Thus D(x) ∩ D(a) 6= φ and hence
V ((P : a)) ⊆ cl(D(a)). By the definition, we have V ((P : a)) = Supp(a). It
remains to prove that cl(D(a)) = Spec(P )\int V (a).

Let I1 ∈ cl(D(a)) and suppose that I1 ∈ int V (a). Then there exists an open
set U of Spec(P ) with I1 ∈ U ⊆ V (a), and so I1 /∈ Spec(P )\U , a contradiction
as Spec(P )\U is a closed set containingD(a). So cl(D(a)) ⊆ Spec(P )\int V (a).
Let I1 ∈ Spec(P )\int V (a) and let D(x) be any arbitrary element in B with
I1 ∈ D(x). Suppose that D(x) ∩ D(a) = φ. Then I1 ∈ D((P : a)) ⊆ V (a), a
contradiction. �

Lemma 2.7. Let P be a poset with greatest element e. Then Spec(P ) does not
contains any clopen subset.

Proof. Suppose that A is a clopen subset of Spec(P ) and let J = ∩A and
J1 = ∩Ac. Then by Lemma 2.2 A = cl(A) = V (J) and Ac = V (J1), and so
V (J) ∩ V (J1) = φ which gives e ∈ P = J ∪ J1, a contradiction. �

Lemma 2.8. Let P be a poset with greatest element e. If F ⊆ Spec(P ) is a

closed set and D(K) is an open set in Spec(P ) satisfying F ∩Max(P ) ⊆ D(K),
then F ⊆ D(K).

Proof. Suppose that there is I ∈ F with I /∈ D(K). Then K ∪ L ⊆ I, since
F = V (L) for some semi-ideal L of P . Hence, each maximal semi-ideal M
containing I is also in F. Then M ∈ F ∩ Max(P ), and so M ∈ D(K), a
contradiction. �

Theorem 2.9. Let P be a poset with greatest element e. Then

(i) Max(P ) is a compact T1 subspace.

(ii) If Spec(P ) is normal, then Max(P ) is a Hausdorff space.

Proof. (i) Let B = {D(si) : si ∈ J} be the basis of P for any subset
J of P , and suppose that Max(P ) = (∪sj∈JD(si)) ∩ Max(P ). Then φ =

∩si∈J(Max(P )\D(si)) = (∩si∈JV (si)) ∩Max(P ) = V (∪si∈J(si)
l) ∩Max(P )

which implies e ∈ (si)
l and e = si for some si ∈ J. So Max(P ) = D(si). Let

M1 and M2 be two distinct elements in Max(P ). Then M1 ∈ D(M2) and
M2 ∈ D(M1), and so Max(P ) is a T1 space.

(ii) Let M1 and M2 be distinct elements in Max(P ). Then {M1} and {M2}
are closed subsets in both Spec(P ) and Max(P ). If Spec(P ) is normal, then
there exist disjoint open sets D(I) and D(J) such that {M1} ⊆ D(I) and
{M2} ⊆ D(J) for some semi-ideals I and J of P, respectively. So, M1 ∈
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D(I)∩Max(P ), andM2 ∈ D(J)∩Max(P ), which implyMax(P ) is a Hausdorff
space. �

3. Properties of semi-ideal-based zero-divisor graphs

In this section, we associate the poset properties of P and the graph prop-
erties of semi-ideal-based zero-divisor graphs of poset. Although the proof of
the following three theorems are just smilar of that for Theorem 2.4, Lemma
2.12 and Theorem 2.13 given in [7] to semi-ideal I of P.

Theorem 3.1 ([7]). Let I be a semi-ideal of P . Then GI(P ) is connected and

diam(GI(P )) ≤ 3.

Theorem 3.2 ([7]). Let I be a semi-ideal of P and if a − x − b is a path in

GI(P ), then either I ∪ {x} is a semi-ideal of P or a− x − b is contained in a

cycle of length ≤ 4.

In view of above theorem, we have the following corollary.

Corollary 3.3. Let |GI(P )| ≥ 3 and I ∪ {x} be not a semi-ideal of P for any

x /∈ I. Then any edge in GI(P ) is contained in a cycle of length ≤ 4, and
therefore GI(P ) is a union of triangles and squares.

Theorem 3.4 ([7]). Let I be a semi-ideal of P . If GI(P ) contains a cycle,

then the core K of GI(P ) is a union of triangles and rectangles. Moreover,

any vertex in GI(P ) is either a vertex of the core K of GI(P ) or else is an end

vertex of GI(P ).

Lemma 3.5. Let I be a semi-ideal of P . Then a pentagon or hexagon can not

be a GI(P ).

Proof. Suppose that GI(P ) is a − b − c − d − e − a, a pentagon. Then by
Theorem 3.2, I ∪ {a} is a semi-ideal of P . Then in the pentagon, (a, b)l ⊆ I
and (a, e)l ⊆ I. Since I ∪ {a} is a semi-ideal, and (a, c)l * I, we have a ≤ c.

Similarly, we can show that a ≤ d. Thus a ∈ (c, d)l ⊆ I, a contradiction to
a /∈ I. The proof for the hexagon is the same. �

Theorem 3.6. If I ∪ {x} is not a semi-ideal of P for any x ∈ P\I and

|GI(P )| ≥ 3, then every pair of vertices in GI(P ) is contained in a cycle of

length ≤ 6.

Proof. Let a, b ∈ GI(P ). If (a, b)l ⊆ I, then a − b is an edge of triangles or
rectangles by Corollary 3.3. If a−x− b is a path in GI(P ), then it is contained
in a cycle of length ≤ 4. If a−x− y− b is a path in GI(P ), then we find cycles
a− x− y− c− a and b− y− x− d− b where c 6= x and d 6= y. This gives cycle
a− x− d− b− y − c− a of length 6. �

Lemma 3.7. Let P be a poset and let a, b ∈ GP(P ). Then

(i) Supp(a)∪Supp(b) 6= Spec(P ) if and only if Supp(a)∪Supp(b) ⊆ V (c)
for some c ∈ GP(P ).
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(ii) D(a) ∩ D(b) 6= φ if and only if there exists c ∈ GP(P ) such that φ 6=
D(a) ∩D(b) ⊆ V (c).

Proof. (i) Suppose Supp(a)∪Supp(b) 6= Spec(P ). Then there exists an element
P ∈ Spec(P ) with x, y /∈ P for some x ∈ (P : a) and y ∈ (P : b). So (x, y)l * P.
So there exists t ∈ (x, y)l with t /∈ P. It is easy to verify that t ∈ GP(P ) and
Supp(a) ∪ Supp(b) ⊆ V (t). Conversely, let Supp(a) ∪ Supp(b) ⊆ V (c) for some
c ∈ GP(P ) and suppose that Supp(a) ∪ Supp(b) = Spec(P ). Then c ∈ P, a
contradiction. Hence, Supp(a) ∪ Supp(b) 6= Spec(P ).

(ii) Obvious. �

Now by Theorem 3.1, and Lemma 3.7, we have the following characteriza-
tions of the diameter of GP(P ).

Theorem 3.8. Let P be a poset and let a, b ∈ GP(P ) be distinct elements.

Then

(i) For any c ∈ GP(P ), we have c is adjacent to both a and b if and only

if Supp(a) ∪ Supp(b) ⊆ V (c).
(ii) d(a, b) = 1 if and only if D(a) ∩D(b) = φ.
(iii) d(a, b) = 2 if and only if D(a) ∩ D(b) 6= φ and Supp(a) ∪ Supp(b) 6=

Spec(P ).
(iv) d(a, b) = 3 if and only if D(a) ∩ D(b) 6= φ and Supp(a) ∪ Supp(b) =

Spec(P ).

Proof. (i) and (ii) are trivial.
(iii) Let a, b ∈ GP(P ). Then d(a, b) = 2 if and only if (a, b)l * P and

there exists c ∈ GP(P ) such that c is adjacent to both a and b if and only if
D(a)∩D(b) 6= φ and Supp(a)∪Supp(b) ⊆ V (c) if and only if D(a)∩D(b) 6= φ
and Supp(a) ∪ Supp(b) 6= Spec(P ) by Lemma 3.7.

(iv) By Theorem 3.1, d(a, b) = 3 if and only if d(a, b) 6= 1, 2 if and only if
D(a) ∩D(b) 6= φ and Supp(a) ∪ Supp(b) = Spec(P ) by (i) and (ii). �

Theorem 3.9. Let I be a semi-ideal of P and let a ∈ GI(P ). If a is adjacent

to every other vertex in GI(P ), then (I : a) is a prime semi-ideal of P.

Proof. Let (x, y)l ⊆ (I : a) for x ∈ P. Then (a, x, y)l ⊆ I and so x ∈ (I : t)
for all t ∈ (y, a)l. Suppose that y /∈ (I : a). Then there exists t1 ∈ (y, a)l

such that t1 /∈ I. We now claim that It1 = Ia. Clearly (I : a) ⊆ (I : t1).
Now let p ∈ (I : t1). If p ∈ I, then p ∈ (I : a). Otherwise p /∈ I. It is clear
that p ∈ GP(P ). Since a is adjacent to every vertex, therefore (p, a)l ⊆ I. So
(I : a) = (I : t1). Since x ∈ (I : t1), we have x ∈ (I : a). �

Lemma 3.10. Let P be a poset. If x ∈ P and (I : x) is maximal among

(I : a) = {y ∈ P : (a, y)l ⊆ I}, then (I : x) is a prime semi-ideal of P.

Proof. Suppose that (a, b)l ⊆ (I : x) and a /∈ (I : x). Then (a, b, x)l ⊆ I. Let
z ∈ (a, x)l\I. Then (b, z)l ⊆ (a, b, x)l ⊆ I, thus b ∈ (I : z). Since (I : x) ⊆ (I : z)
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and z /∈ I, we have (I : z) 6= P. By the maximality of (I : x), we have
(I : x) = (I : z), hence b ∈ (I : z) = (I : x). �
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