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ABSTRACT. Unlike for polynomial rings, the notion of multiplication for the near-ring of
polynomials is the substitution operation. This leads to somewhat surprising results. Let
S be an abelian left near-ring with identity. The relation ~ on S defined by letting a ~ b
if and only if anng(a) = anns(b), is an equivalence relation. The compressed zero-divisor
graph I'g(S) of S is the undirected graph whose vertices are the equivalence classes in-
duced by ~ on S other than [0]s and [1]s, in which two distinct vertices [a]s and [b]s
are adjacent if and only if ab = 0 or ba = 0. In this paper, we are interested in studying
the compressed zero-divisor graphs of the zero-symmetric near-ring of polynomials Ro[x]
and the near-ring of the power series Ro[[z]] over a commutative ring R. Also, we give a
complete characterization of the diameter of these two graphs. It is natural to try to find
the relationship between diam(T'z(Ro[z])) and diam(I's(Ro[[z]])). As a corollary, it is
shown that for a reduced ring R, diam(I'z(R)) < diam(I'g(Ro(z])) < diam(I'z(Ro[[z]])).

1. Introduction

Throughout this paper, all rings are associative rings with identity and all
near-rings are abelian left near-rings with unity. Recall that a non-empty set S
with two binary operations “+ ” and “-” is an abelian left near-ring if (S,+)
forms an abelian group, (S,-) forms a semi-group, and a-(b+¢) =a-b+a-c for
each a,b,c € S. Clearly, every ring is a near-ring. The zero-symmetric part of a
near-ring S is the set of all elements a € S such that 0-a = 0 and it is denoted
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by So. Moreover, a near-ring N is called zero-symmetric ift S = Sy. Let S be a
near-ring and A C S. Then anng(A) = L.anng(A) Ur.anng(A), where

Lanng(A) ={s € S| sa =0 for each a € A}

and r.anng(A) = {s € S| as = 0 for each a € A}. Also, we write Z,(S5), Z,(S)
and Z(S) for the set of all left zero-divisors of 5, the set of all right zero-divisors
and the set Zy(S) U Z,.(S), respectively. Moreover, we use (A4) to denote the ideal
generated by A. For basic definitions and comprehensive discussion on near-rings,
we refer the reader to [21].

Let G be a graph. Recall that G is connected if there is a path between any two
distinct vertices of G. Also, the diameter of G is

diam(G) = sup{d(a,b)|a, b are vertices of G},

where d(a, b) is the length of the shortest path from a to b. Moreover, the girth of
G, gr(G), is the length of the shortest cycle of the graph, and gr(G) = oo if G has
no cycles.

The concept of a zero-divisor graph of a commutative ring R was introduced
by Beck in [5]. However, he let all elements of R be vertices of the graph and was
mainly interested in coloring. Inspired by his study, Anderson and Livingston [3],
redefined and studied the (undirected) zero-divisor graph I'(R), whose vertices are
the non-zero zero-divisors of a ring such that distinct vertices x and y are adjacent
if and only if zy = 0. According to [3, Theorems 2.3 and 2.4], I'(R) is connected
with diam(I'(R)) < 3, and gr(I'(R)) < 4 if I'(R) contains a cycle. Redmond [22]
extended the concept of the zero-divisor graph to noncommutative rings. Several
papers are devoted to studying the relationship between the zero-divisor graph and
algebraic properties of rings (cf. [3, 15, 17, 18, 20, 22]).

In [8], the authors generalized this concept to a zero-symmetric near-ring S.
They defined an undirected graph I'(.S) with vertices in the set Z*(S) = Z(5) \ {0}
and such that for distinct vertices a and b there is an edge connecting them if and
only if ab = 0 or ba = 0. Following [8, Theorem 2.2], the zero-divisor graph of
zero-symmetric near-ring S is connected and diam(F(S)) <3.

For a ring or near-ring S, define a ~ b if and only if anng(a) = anng(b). As
in [20], one can see that ~ is an equivalence relation on S. For any a € S, let
[als = {b € S| a ~ b} (for short we can use [a] instead of [a]g). For instance, it
is clear that [0]s = {0} and [1]s = S\ Z(95), and that [a]s C Z(S) \ {0} for each
ae S\ ([0]s U[l]s).

As in [23], T'g(S) will denote the (undirected) graph, called the compressed
zero-divisor graph of S, whose vertices are the elements of Sg \ {[0]s,[1]s} such
that distinct vertices [a]s and [b]s are adjacent if and only if ab = 0 or ba = 0. Note
that if @ and b are distinct adjacent vertices in I'(S), then [a]s and [b]g are adjacent
in T'g(S) if and only if [a]g # [b]s. Clearly, diam(I'g(S)) < diam(I'(S)). For a
commutative ring R, Anderson and LaGrange [2], showed that gr(I'g(R)) = 3 if
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I'z(R) contains a cycle, and determined the structure of I'g(R) when it is a cyclic
and the monoid Rg when I'p(R) is a star graph.

Let R be a ring. Since R[z] is an abelian near-ring under addition and
substitution, it is natural to investigate the near-ring of polynomials (R[z], +,0).
The binary operation of substitution, denoted by “ o ”, of one polynomial into
another is both natural and important in the theory of polynomials. We adopt the

convention that for polynomials f = >"1" ;2" and g € R[z],

m
gof=> aig"
=0
2

For example, (ag + a1z) o 22 = (ap + a17)®> = a3 + (apa1 + ajap)w + a3x>.
However, the operation o, left distributes but does not right distribute over
addition. Thus (R[z],+,0) forms a left near-ring but not a ring. We use R[z]
to denote the left near-ring (R[x], +, o) with coefficients from R and

Ry[z] = {f € R[z] | f has zero constant term}

is the zero-symmetric left near-ring of polynomials with coefficients in R. Also,
for each f = >71" a;a’ and g = 377 bja’ € Rlz], we write

-+
fg= Z:S”(Zm:k aibj)xk-

The aim of this paper is the study of the compressed zero-divisor graphs
of zero-symmetric near-ring of polynomials Ry[z] and near-ring of formal power
series Rp[[z]] over a commutative ring R. For a reduced ring R, we prove that
diam(I'g(Ro[z])) = i if and only if diam(I'g(R[z])) = i for each i = 1,2,3.
Moreover, we show that diam(I'g(Rg[z])) = 1 if and only if [[gp(R)] < 2,
Nil(R)?> = 0, Z(R) = anng(a) for some a € R, and anng(c) = Nil(R) for each
c € Z(R) \ Nil(R). Also, it is proved that diam(T'(Ro[z])) = 3 if and only if
diam (T g(Ro[z])) = 3. In addition, we are interested in characterizing the diameter
of graph I'p(Rop[[x]]). In fact, The diameter of the graphs 'y (R][[z]]) and T g (Ro][[x]])
are the same when R is a reduced ring. Also, we try to relate diam(FE(R)) to
I'r(Ro[[x]]). As a corollary, it is shown that

diam (T g(R)) < diam(I'g(Rolz])) < diam (T g(Ro[[z]])),

where R is reduced. Moreover, we give a complete characterization for the possible
diameters of I'p(Rp[[x]]), where R is a non-reduced Noetherian ring.

2. On the Diameter of the Compressed Zero-divisor Graph of Rq|x]

Let R be a commutative ring. Following [1, Theorem 2.7], we have

2 < diam(T'(Ro[z])) < 3.
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Hence diam(I'g(Ry[z])) < 3, since diam(I'g(Roz])) < diam(I'(Rolz])).
Proposition 2.1. Let R be a commutative ring with Z(R) # 0. Then
diam(Ig(Ro[z])) > 1.

Proof. First suppose that R is a reduced ring and 0 # a € Z(R). Thus ab = 0
for some non-zero b # a of R. If [ax] = [bx], then ax € annp,,)(ar), and so
a? = 0, which is a contradiction. Hence diam(I‘E(Ro[x])) > 1. Now assume R
is a non-reduced ring. Then there exists 0 # a € R such that > = 0. Thus
ax,ax+x° € Z(Ro [m]) Also, 22 € ann g, (ax) but 2% ¢ ann gy [q] (ax +2?), which
implies that [az] # [ax + 2°], and so diam(I'g(Ro[z])) > 1. O

For any f € R[z], we denote by Cj the set of all coefficients of f. Also, the set
of all non-zero coefficients of f is denoted by C'; = Cy \ {0}.

To characterize the diameter of I'g(Rp[z]), where R is a reduced ring, we need
the following lemma.

Lemma 2.2. Let R be a reduced ring. Then
(1) [4, Lemma 1] For each f,g € R[z], fg = 0 if and only if a;b; = 0 for each
a; € Cy and bj € Cy.
(2) [7, Lemma 3.4] For each f,g € Ro[z], fog =0 if and only if a;b; = 0 for
each a; € Cy and b; € Cj.

Let R be a reduced ring and f, g be elements of the ring R[z]. Then fg =0
if and only if a;b; = 0 for each a; € Cf and b; € Cy4, by Lemma 2.2. Hence
fxogr =0, by Lemma 2.2. On the other hand, Z(Ry[z]) C Z(R][z]), by Lemma
2.2. Thus d([f],[g]) = t in Tg(R[z]), if and only if d([fz], [gz]) = ¢ in T g(Ro[z]).
Therefore we can conclude the next result.

Proposition 2.3. Let R be a reduced ring. Then
(1) diam (T g(R[z])) = 1 if and only if diam(I'g(Ro[x]))
(2) diam(T'g(R[z])) = 2 if and only if diam(I'g(Roz])) = 2.
(3) diam (T g(R[x])) = 3 if and only if diam(Ig(Ro[z])) = 3.
Corollary 2.4. Let R be a reduced commutative ring. Then diam(I'(Ry[z])) = 3 if
and only if diam (T g(Ro[z])) = 3.

Proof. (=) Since diam(I'(Ro[z])) = 3, then we have diam(T'(R[z])) = 3, by
[1, Proposition 2.10]. Thus diam(I'g(R[z])) = 3, by [12, Theorem 3.3]. Hence
diam (T g(Ro[z])) = 3, by Proposition 2.3.

(<) It is clear, since diam(I'g(Ro[x])) < diam(I'(Ro[z])) < 3. O

1.

Now, we investigate the diameter of I'g(Rg[x]), when R is not reduced. For this
purpose, we bring the following lemmas which are used extensively in the sequel.
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Lemma 2.5. ([1, Lemma 2.4]) Let R be a commutative ring and f = > | a;x",
g= Z;n:l bjz’ be non-zero elements of Rolz] with fog=0. Then

(1) rf =0 for some non-zero r € R.
(2) f is nilpotent or sg =0 for some non-zero s € R.

Lemma 2.6. ([1, Proposition 2.5]) Let R be a non-reduced commutative ring. Then
Zy(Ro[z]) = Ze(Rolz]) U

{Z a;x' € Rolz] | anng(ar) N Nil(R) #0 and a; € R for each i > 2},
i=1

where Zy(Ro[z]) = {f € Rolz] | rf =0, for some 0 #r € R}.

Lemma 2.7. Let R be a non-reduced commutative ring and for each a,b € Z(R),
anng({a,b}) N Nil(R) # 0. Then diam(I'g(Ro[z])) < 2. Also, if there exists
¢ € Nil(R) such that * =0 # c*=* for some k > 3, then diam (T g(Ro[z])) = 2.

Proof. By [1, Theorem 2.9], we have diam (I'g(Ro[z])) < diam(I'(R[z])) = 2.
Now assume that ¢® = 0 but ¢*~1 # 0 for some ¢ € Nil(R) and k > 3. Since
?zoxk™l =0, then 2! € Z(Ro[z]). Also, cx o z*™1 £ 0 # 2! o ca. Since
a¥ € annpyp)(cx) but 2% ¢ annp,,)(z*71), then [cx] # [, It follows that
d(cx,z*~1) > 2, and thus diam (T g(R[z])) = 2. O

Following [14], a ring R is called semicommutative if ab = 0 implies aRb = 0 for
each a,b € R.

Remark 2.8. Let R be a commutative ring. Then R is a semicommutative
ring, and so Nil(R[z]) = Nil(R)[z], by [16]. On the other hand, Nil(Ro[z]) =
Nil(R)o[z], by [11, Corollary 2]. Therefore Nil(Ry[xz]) = Nil(R[z])z. We use this
fact freely in the sequel.

For any f € Ry[z], we use deg(f) to denote the degree of f.

Theorem 2.9. Let R be a non-reduced commutative ring. Then diam (I'g(Rolx])) =
1 if and only if |ITg(R)| < 2, Nil(R)? =0, Z(R) = annr(a) for some a € R, and
anng(c) = Nil(R) for each ¢c € Z(R) \ Nil(R).
Proof. (=) Let diam(I'g(Ro[z])) = 1. Since R is a non-reduced ring, there exists
0 # a € R such that a® = 0. Let b € Z(R). If [az] = [bz], then ax € anng,(bz),
since a? = 0. Thus axobx = 0, and so ab = 0. Also, if [az] # [bx], then az obx = 0,
by hypothesis. Hence ab = 0. Therefore Z(R) = anng(a). It follows that for each
b € Nil(R), b*> = 0, by Lemma 2.7. Now assume that b, ¢ are distinct elements of
Nil(R). If [bx] = [cx], then cx € annpg,[;)(bz), and so be = 0. If [bx] # [cx], then
0 = bex = bx o cx, by assumption. Hence Nil(R)? = 0.

Now suppose that ¢ € Z(R) \ Nil(R) and d € anng(c). Thus [2%] = [cz], since
diam (T g(Ro[z])) = 1. Hence dx € annp,y(cx) = annpgy[;)(z?), which implies that
d? = 0, and so anng(c) € Nil(R). Also, by a similar way as used above, we have
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Z(R) = anng(b) for each b € Nil(R), since b> = 0. Hence Nil(R) C anng(c).
Therefore Nil(R) = anng(c).

Let ¢ € Z(R). If ¢ is nilpotent, then anng(c) = Z(R), and if ¢ ¢ Nil(R), then
anng(c) = Nil(R). Hence there exist at most two different vertices [a]g and [b]g
in I'g(R), where a € Nil(R) and b ¢ Nil(R). This shows that [I'g(R)| < 2.

(<) We claim that for each ¢ € Nil(R), anng,(cz) = Z(Rolz]) and
anng(c) = Z(R). Since Nil(R)?> = 0 and ¢ € Nil(R), then Nil(R) C anng(c).
Now assume d € Z(R) \ Nil(R). Hence anng(d) = Nil(R), and thus c¢d = 0.
It means that annp(c) = Z(R). Now suppose that g = >7°, bjal € Z(Rolx]).
Thus cx o g = 0, since Nil(R)?> = 0 and b, € Z(R), by Lemma 2.6. Hence
annp,g)(cr) = Z(Ro[as]). On the other hand, since R is non-reduced,
2% € Z(Rolz]). Also, 22 € annp,y)(cz) but @? ¢ annp,;(x?). Hence we have
at least two vertices [cz] and [2?] in Tg(Rolx]). Clearly, r.annpg,,j(2*) = 0. On
the other hand, if g € L.annpg,,)(2?), then g> = 0, and so g € Nil(R)o[z]. Since
Nil(R)? = 0, then Nil(R)olz] C f.annp,[,)(z?), and thus

ann g, (2%) = Nil(R)o[z] = Nil(Ro[z]).

Now let f be a non-zero element of Z(RO [x]) We can write f = f1 + fa + f3 such
that C3 C Nil(R), C3, € Z(R) \ Nil(R), and C}, C R\ Z(R). We consider the
following cases:

Case 1. Let f = fi = Y/ a;a" and g = Y37 bja? € Z(Ro[z]). Since
C3, < Nil(R), then anng(a;) = Z(R) for each 1 < ¢ < n. Also, by Lemma 2.6,
by € Z(R). Hence fog =0, since Nil(R)* = 0. Therefore annp,[,)(f) = Z(Ro[]),
and so [ = ] = fea] |

Case 2. Let f = fo = | a;z". Then anng(a;) = Nil(R) for each 1 <1i < n.

Suppose that g = Z;nzl bjz? € r.annp,;)(f). It means that
fog=bif +baf?+ -+ buf™ =0.

Thus by,a) = 0, since it is the leading coeflicient of f o g = 0. Also, from
an ¢ Nil(R) yields a)' ¢ Nil(R), and so b, € annp,(ay’) = Nil(R). Hence
by, € Nil(R), which implies that b,,f = 0, since anng(a;) = Nil(R). Thus
fog = bif+bf?+ - +b,_1f™! = 0. Continuing this process, we see
that b; € Nil(R) for each 1 < j < m — 1. Hence g is a nilpotent element of
Rolz], and so r.anng,,)(f) € Nil(R)olr]. Now assume that g € L.anng,(f)-
Thus go f = ai1g + a29® + -+ + a,g" = 0, and so a,b?, = 0. This shows that
b € anng(a,) = Nil(R), which implies that b,, € Nil(R). Hence

go f=aigi +asgi+ -+ angl =0,

where ¢ = Z;n;ll bjwj . By repeating this argument, we can conclude that
bj € Nil(R) for each 1 < j <m — 1. Therefore L.annp,(f) C Nil(R)o[z]. Since
anng(a;) = Nil(R) foreach 1 <4 < n, then gof =0 = fog for each g € Nil(R)o[z].
Hence annpg,z)(f) = Nil(R)o[z] = Nil(Ro[z]). Therefore [f] = [f2] = [¢?].



An Alternative Perspective of Near-rings of Polynomials and Power Series 443

Case 3. Let f = f3 = ., a;z’. Then a; = 0, by Lemma 2.6. Since rf # 0 for
each 0 # r € R, then r.annpg,[;)(f) = 0, by Lemma 2.5. Also, if g € L.annpg,,)(f),
then g is nilpotent, by Lemma 2.5. Since Nil(R)? = 0, then

hof=agh®>+---+a,h" =0
for each h € Nil(R)o[z]. Therefore
annRO[I](f) = Z.annRom(f) = Nil(R)o[z] = Nil(Ro[x]).

Hence [f] = [f3] = [2°].

Case 4. Let f = fi + fo, where 0 £ f1 = > i a;2° and 0 # fo = 22:1 Csxs.
Suppose that g € L.annpg,[;)(f). Then rg = 0 for some 0 # r € R, by Lemma
2.5. Thus C; C Z(R). Since anng(a;) = Z(R) for each a; € Cj, we have
gof=rcig+cog?+---+cigt = go fo =0, which implies that g € L.annp, 2] (f2)-
Thus L.anng, . (f) C Nil(Ro [:1:]), by Case 2. Now, assume

g= Z;nzl bjzl € r.ann g,z (f)-
Since f is not nilpotent, then C; C Z(R), by Lemma 2.5. Hence
0=fog=bif +baf?>+ - +buf" =bifo+baf5+- +bnfs" = faoy,

which implies that g € r.anng,,(f2), and so g € Nil(Rg[z]), by Case 2. Since
anng(a;) = Z(R) for each a; € C§ and annp(cs) = Nil(R) for each ¢; € C7%,, then
Cannp, ) (f) = ranng,(f) = Nil(Rolz]). Hence anng,p(f) = Nil(Rolz]).
Therefore [f] = [f1 + fo] = [2?].

Case 5. Let f = f1 + f3, where 0 £ f1 = > i a;z° and 0 # f3 = Zi:l CsxS.
Then a; + ¢; is the coefficient of z in f. By Lemma 2.6, we have a; + ¢; € Z(R).
Thus ¢; = 0, since a3 € Z(R) and Z(R) = anng(a) for some a € R. Hence
deg(f3) > 2. Similar to Case 3, we can conclude that r.anngy;;1(f) = 0. On
the other hand, if go f = 0 for some g € Rg[z], then g is nilpotent, by Lemma
2.5. Hence {.annp,y(f) € Nil(Rolx]). Since Nil(R)? = 0 and anng(a;) = Z(R)
for each a; € C}, then go f = 0 for each g € Nil(Ro [x]) Therefore we have
annpy o) (f) = L.anng,)(f) = Nil(Ro[x]). Thus [f] = [f1 + f3] = [2?].

Case 6. Let f = fo + f3, where f; # 0 for each i € {2,3}. Since deg(f3) > 2
and anng(a;) = Nil(R) for each a; € C7},, then by a similar way as used in Case 5
one can show that annp,y)(f) = L.annpy)(f) = Nil(Ro[z]). Hence [f] = [27].

Case 7. Let f = f1 + fo + f3, where f; # 0 for each ¢ € {1,2,3}. Since
C3, € R\Z(R), then r.annp,;)(f) = 0 and L.annpg,)(f) € Nil(Ry[z]), by Lemma
2.5. Hence annp,[;)(f) = Nil(Ro[z]), and so [f] = [f1 + f2 + f3] = [2?].

Therefore |I'g(Ro[z])| = 2, and thus diam (T g(Ro[z])) = 1. a

Corollary 2.10. Let R be a non-reduced commutative ring with Z(R) # 0. If
Z(R)*> =0, then diam(I'g(Ro[z])) = 1.
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From [1, Theorems 2.7 and 2.9], we immediately deduce the following result.

Proposition 2.11. Let R be a non-reduced commutative ring. Then there
exist a,b € Z(R) with anng({a,b}) N Nil(R) = 0 if and only if diam(I'(Ro[z])) = 3

Lemma 2.12. Let R be a commutative ring and a,b € R. If
anng({a,b}) N Nil(R) =0,

then anng({a”,b*}) N Nil(R) = 0 for each positive integer k, s with a® # 0 # b°.

Proof. Let a* # 0 for some positive integer k. On the contrary, assume that
and 0 # t € anng({a®,b}) N Nil(R). Then ta® = 0 = tb. Hence there exists
1 <r <k —1 such that ta” # 0 but ta" "' = 0. Thus ta” € anng({a,b}) N Nil(R),
which is a contradiction. Now suppose b° # 0 for some positive integer s. Put
a’ = a* # 0. Hence anng({a’,b}) N Nil(R) = 0, and so by a similar way as used
above, anng({a’,b°}) N Nil(R) = 0, as desired. O

Theorem 2.13. Let R be a non-reduced commutative ring. Then diam (I‘(RO [x])) =
3 if and only if diam (T g(Ro(z])) = 3.

Proof. (=) Let diam(I'(Ro[z])) = 3. Then there exist a,b € Z(R), such that
anng({a,b}) N Nil(R) = 0, by Proposition 2.11. Notice that if a or b € Nil(R)
and ab = 0, then anng({a,b}) N Nil(R) # 0, which is a contradiction. Hence we
consider the following cases:

Case 1. Let a,b ¢ Nil(R). Since anng({a,b}) N Nil(R) = 0, then either there
exists ¢ € Nil(R) such that ca = 0 but ¢b # 0 or for each ¢ € Nil(R), ca # 0 # cb.

First assume ca = 0 but ¢b # 0 for some ¢ € Nil(R). There exists a positive
integer k such that ¢ = 0. Hence az + z*,bz € Z(Ry[z]). Since

cx € annp, ) (ax + )

but cz ¢ annp, [y (bx), then [ax+a*] # [ba]. Also, bro(az+a*) # 0 # (azx+a")obx.
Since for each 0 # r € R, r(axz + 2¥) # 0, then

ann g, (ax + 2%) = Lanng, g (ax + z¥) C Nil(Ro[x]),

by Lemma 2.5. Suppose that g = > ¢z’ € anng,)(az + z*) N anng, ) (bz)
and ¢, # 0. Then g o (ax + 2¥) = 0 and either gobxr = 0 or bx o g = 0. Hence
¢; € Nil(R) for each i and acs; = 0. If g o bx = 0, then bes = 0, which implies that
cs € annR({a, b}) N Nil(R), a contradiction. If 0 = bx o g = ¢sb*z® + - - - + cpb"z",
then c,b° = 0. Since b ¢ Nil(R), then b* # 0. Hence ¢, € anng({a,b°}) N Nil(R),
which is a contradiction by Lemma 2.12. Thus bz and az + z¥ have not common
non-zero annihilator, and so d([az + 2"}, [ba]) > 3. Therefore diam (I'g(Ro[z])) = 3.

Now assume for each ¢’ € Nil(R), c'a # 0 # ¢/b. Since R is not reduced,
there exists ¢ € R such that ¢ = 0. Thus ¢b # 0 and cbx + 22 € Z(Ro[z]).
Hence [cbx + 2?] # [az], since cx € annp,[y)(cbz + 2?) \ annpg,z)(az). Obviously,
(cbx + x?) 0 ax # 0 # ax o (cbx + x?). By Lemma 2.5, we have
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ann g,z (cbr + 2?) = Lanng, ) (cbx + 2?) C Nil(Rolz]).

Let g = Y0 cia’ € annpgy)(cbx + 2?) N annpgy,)(ax) and ¢; # 0. Hence either
goar =0orarog =0. If goax = 0, then ac, = 0, which is a contradiction.
If ax o g = 0, then csa® = 0. Since a® # 0, there exists 1 < ¢t < s — 1 such that
csal # 0 but csa®™ = 0. Hence csal € anng(a) N Nil(R), which is a contradiction.
Therefore d([cbx + #%], [ax]) > 3, and so diam(I'g(Rg[z])) = 3.

Case 2. Let a € Nil(R), b ¢ Nil(R) and ab 7é O Hence there exists a positive
integer k such that a® = 0 but a*=! # 0. Thus a2 + xk b:z: € Z&Ro . Since
ar € annpy(af 1z + ) \ annp,,)(br), then [ba] # oy + o Moreover
bro (a1 + 2F) £ 0 # (a* 1o + 2%) o bz. Let

g € annp, ) (a"tx + 2F) N anng, g ().

Hence g = >

» ¢zt with ¢ # 0 is nilpotent, since

ann g, (aF 1z + %) = Lanng,p) (aF e 4+ 2F) C Nil(Ryz]).
From go (a*~lz+ 2%) = 0 yields a*~!cy = 0. On the other hand, if go bz = 0, then
be, = 0. Therefore 0 # ¢s € anng({a*!,b}) N Nil(R), which is a contradiction
by Lemma 2.12. Now assume that bx o g = 0. Then ¢:b° = 0. Since b ¢ Nil(R),
then b° # 0. Thus 0 # ¢, € annp gg{ak 1,5°}) N Nil(R), which is a contradiction by
Lemma 2.12. Hence d([a* "z + z ) > 3 and so the result follows.

Case 3. Let a,b G Nil(R) and ab 7$ 0. Then there exist positive integers ¢, k
such that a* = b* = 0 but a*~! # 0 # b*~'. Therefore

a" o4 ah b e + 2t € Z(Rolx]).
Notice that (a* 'z +xF)o (b' "tz +at) # 0 # (b 'z +a') o (a* 1z +2*). Moreover,
annpyz) (@ a + ) = Lannp, ) (a* " + 2¥) C Nil(Ro[z))
and ann g,y (0" z+at) = Lanng, ) (b e+at). Also, if ax € annp, ) (b 'a+at),
then az o (b'"'z 4+ 2') = 0, and so a € anng({a"~!,b'"1}) N Nil(R), which is a
contradiction by Lemma 2.12. Hence
ax € annp, ) (aF 1z + ) \ annpg ) (0 2 + 2t),
and so [a" 1z + 2] # [b'~'w + 2?]. Let
9= cix’ € annp,p)(a" x4 2F) Nanng, (0 e 4 1t), ¢ #0.
Hence g o (a* 1z + 2%) = 0 = g o (b' 1z + 2t). Therefore

0 # ¢s € anng({a"~1,b'"1}) N Nil(R),



446 F. Shokuhifar, E. Hashemi and A. Alhevaz

which is a contradiction by Lemma 2.12. Hence d([a*~'x + 2], [b*~1z + 2!]) > 3,
as wanted.

(<) Let diam (T g(Ro[z])) = 3. Since diam(I'g(Ro[z])) < diam(I'(Ro[z])) < 3,
then the result follows. O

By using Theorems 2.9 and 2.13, we can determine when diam(I'g(Rg[z])) = 2.
Theorem 2.14. Let R be a non-reduced commutative ring with Z(R) # 0. Then
diam (T g(Ro[z])) = 2 if and only if anng({a,b}) N Nil(R) # 0 for each a,b € Z(R)
and one of the following conditions holds:

(1) | Te(R) = 3.

(2) Z(R) # anng(c) for each ¢ € R.

(3) Nil(R)? # 0.

(4) There exists 0 # ¢ € Z(R) \ Nil(R) such that anng(c) # Nil(R).

Proof. (=) By Theorem 2.13, we have diam(I'(Ro[z])) = 2. It follows that
anng({a,b}) N Nil(R) # 0 for each a,b € Z(R), by [1, Theorem 2.9], Since
diam (T g(Ro[z])) = 2, then the result follows from Theorem 2.9.

(<) Since anng({a,b}) N Nil(R) # 0 for each a,b € Z(R), we have
diam (T'(Ro[z])) = 2, by [1, Theorem 2.9]. Hence diam(I'g(Ro[x])) € {1,2}, since
diam (T g(Ro[z])) < diam(I'(Ro[z])). On the other hand, if one of the conditions
(1) — (4) holds, then diam(I'g(Ro[z])) # 1, by Theorem 2.9, and so the result
follows. O

3. On the Diameter of the Compressed Zero-divisor Graph of Ry|[z]]

We denote the collection of all power series with positive orders using the
operations of addition and substitution by Rg[[z]], unless specifically indicated
otherwise (i.e., Rp[[z]] denotes (Rpl[[z]],+,0)). Observe that the system
(Ro[[z]],+,0) is a zero-symmetric left near-ring. For any f € Ry[[z]], we denote
by Cy the set of all coefficients of f. Also, the set of all non-zero coefficients of f is
denoted by C} = Cy \ {0}.

In this section, we characterize the diameter of the compressed zero-divisor
graph of the near-ring Ry[[x]].

Lemma 3.1. Let R be a reduced ring. Then
(1) [13, Proposition 2.3] For each f,g € R[[z]], fg =0 if and only if a;b; =0 for
each a; € Cy and b; € Cj.
(2) [6, Lemma 3.3] For each f,g € Ro[lz]], fog =0 if and only if a;b; =0 for
each a; € Cy and b; € Cy.
By using Lemma 3.1 and a similar argument as used in the proof of Proposition
2.3, we can conclude the following nice fact.

Proposition 3.2. Let R be a reduced ring. Then
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(1) diam(T'g(R[[z]])) =1 if and only if diam(I'g(Ro[[z]])) = 1.
(2) diam (T g(R[[z]])) = 2 if and only if diam(I'g(Ro[[z]])) = 2.
(3) diam(T'g(R[[z]])) = 3 if and only if diam(I'g(Ro[[z]])) = 3.

Let R be a commutative ring. For polynomials, McCoy’s Theorem [19, Theorem
2] states that a polynomial f € R[z] is a zero-divisor if and only if there is a
non-zero element r € R such that rf = 0. Based on this theorem, a ring R is said
to be McCoy ring if each finitely generated ideal contained in Z(R) has a non-zero
annihilator [9].

Corollary 3.3. Let R be a reduced commutative ring. Then diam(T'(Ro[[z]])) = 3
if and only if diam(Ig(R[[z]])) = 3.

Proof. (=) Let diam(I'(Ro[[z]])) = 3. Then diam(I'(R[[z]])) = 3, by Lemma 3.1.
Thus by [17, Theorem 4.9], one of the following cases occurs:

Case 1. R is a McCoy ring with Z(R) an ideal but there exist countably
generated ideals I and J with non-zero annihilators such that I 4+ J does not have
a non-zero annihilator. Since Z(R) is an ideal, then R has more than two minimal
primes. Therefore diam (I g(R[[z]])) = 3, by [12, Theorem 4.3].

Case 2. Z(R) is an ideal and each two generated ideal contained in Z(R) has a
non-zero annihilator but R is not a McCoy ring. Then R has more than two minimal
primes and there exists K = (a1,...,a,) C Z(R) with anng(K) = 0, since R is
not McCoy. Hence n > 3. Therefore one can easily show that there exist finitely
generated ideals I and J with non-zero annihilators such that I 4+ J does not have
a non-zero annihilator. Hence diam(FE(R[[x]])) = 3, by [12, Theorem 4.3].

Case 3. R has more than two minimal primes and there is a pair of
zero-divisors a and b such that (a) + (b)) = (a,b) does not have a non-zero
annihilator. Then diam (T g(R[[z]])) = 3, by [12, Theorem 4.3].

Therefore diam (T 5 (Ro[[z]])) = 3, by Proposition 3.2.

The backward direction is clear. a

Corollary 3.4. Let R be a reduced commutative ring. If diam(I'g(Ro[z])) = 3,
then diam (I'g(Ro[[z]])) = 3.

Proof. Let diam(I'g(Ro[z])) = 3. Then diam(I'(Ry[z])) = 3, by Corollary 2.4.
Thus diam(I'(R[z])) = 3, by [1, Proposition 2.10], and so diam(I'(R[[z]])) = 3,
by [17, Theorem 4.9]. Hence diam(I'(Ro[[z]])) = 3, by Lemma 3.1. Therefore the
result follows from Corollary 3.3. a

Proposition 3.5. Let R be a reduced commutative ring. Then
diam (T g(R)) < diam(I'g(Ro[z])) < diam (I g(Ro[[z]])).

(
Proof. Clearly, if diam FE(R)) = 0, then we have diam(FE(R)) < diam(FE(Ro [m]))
Also, diam(I'g(R)) = 1 if and only if diam(I'g(R[z])) = 1 if and only if
diam(I'g(Ro[z])) = 1, by [12, Theorem 3.3] and Proposition 2.3. Therefore if
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3,

diam(I'g(R)) = 2, then diam(I'g(Ro[z])) > 2. Finally, if dlam(I‘E R)) =
=3, by

then diam(I'g(R[z])) = 3, by [12, Theorem 4.4]. Hence diam(I'g(Ro|z]))
Proposition 2.3.

Obviously, diam(I'g(Ro[z])) < diam(I'g(Ro[[z]])), if diam(Ig(Ro[z])) = 1.
Now assume that diam(I'g(Ro[z ])) = 2. Then there exist f,g € Z(RO [2]) Wlth
d([f)Ro[a]> [9)Roz) = 2. On the contrary, suppose that diam (T g(Ro[[z]])) =
Since d([f]rofa]> [9]Rolz]) = 2, We have fog # 0. Therefore [f]ry(z) = [9] R0l
which implies that [f]ry) = Rolz] N [flre[) = Rolz] N [9lro() = [9]Rola), @
contradiction. Hence diam(FE(Ro [x})) < diam(FE(Ro[[x]])), by Corollary 3.4. O

The following lemmas play an important role in proving Theorem 3.10.

Lemma 3.6. ([10, Corollary 1]) Let R be a commutative Noetherian ring. Then
Nil(R[[z]]) = Nil(R)][z]].

For each f € Rylz] and positive integer n, we write

f™W =fofo---of.
N————

n

Lemma 3.7. Let R be a commutative Noetherian ring. Then
Nil(Rofla])) = Nil(R)o[[e])

Proof. First, Suppose that f = Y2 a,a” € Nil(Ry[[z]]). Then there exists a
positive integer n such that £ = 0. We show that for each a;,,a;,,...,a;, € Cy,
we have a;, a4, - - - a;, € Nil(R), which implies that a, € Nil(R) for cach a, € Cy,
as wanted. We use induction on n. Assume that n =2 and R = R/Nil(R). Since
0= fof € Nil(R)o[[z]], then fo f =0 in Ry[[z]]. By Lemma 3.1, we have a;a; =0
for each @;,a@; € C?, since R is a reduced ring. Thus a;a; € Nil(R) for each i, j.
Now suppose that n > 2. Let g = f®~Y. Thus fog € Nil(R)o[[z]]. By a similar
argument as used above, we have a,ay, € Nil(R), where a, € C; and a, € Cy.
Therefore for each a;, € Cy,

goanz = f"Voasx=f""2o(foa,z)=f"" o (a;f) € Nil(R)o[[x]).

By induction, we have a;,a;, - - - a;,a;, € Nil(R), where a;; € Cy for each j and the
coefficients of a;, f are a;, a;,. Therefore a, € Nil(R) for each a, € Cj.

Now assume that f € Nil(R)o[[x]]. Since R is Noetherian, there exists a positive
integer k such that Nil(R)* = 0. It follows that C]’? = 0. Since for each n > 1, the
coefficient of 2" in f*) is a sum of such elements ai, g, - - - aj, where a;; € Cy and
[ > k, then we have f*) = 0. Hence f € Nil(Ry[[z]]). O

Lemma 3.8. Let R be a commutative ring. If f = o, a;x’ is a zero-divisor of
Ry[[x]], then a1 € Z(R).

Proof. Let ay # 0. Since f € Z(Ry|[[z]]), then there exists g = Y o, bjz* € Ryl[z]]
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such that fog =0or go f = 0. Let by be the first non-zero coefficient of g. Assume
that fog =0. Then bka’f = 0. Hence there exists 1 <t < k — 1 such that bkaﬁ #0
but bkai+1 = 0, which implies that a; € Z(R). On the other hand, if go f = 0,
then a1b; = 0, and so the result follows. O

Lemma 3.9. Let R be a Noetherian commutative ring and f = > 2, a;x' and

g= Zj’;l bjz? be non-zero elements of the near-ring Ro[[x]]. If fog =0, then
(1) rf =0 for some non-zero r € R.

(2) f is nilpotent or sg =0 for some non-zero s € R.

Proof. (1) Let by be the first non-zero coefficient of g. Since f o g = 0, we have
b f¥ + bpyq fFH1 4+ .- = 0. Hence (b;C +bpy1f + - -)fk =0. If f¥ =0, then there
exists 1 <t < k—1 such that f* # 0 = f**!. Therefore rf = 0 for some 0 # r € R,
by McCoy’s Theorem. Thus assume that f* # 0. Since 0 # by, + by1f + -+, then
the result follows by McCoy’s Theorem.

(2) Notice that (Cy) = (b1,...,b,) for some n > 1, since R is Noetherian.
Suppose that f is not nilpotent. Thus there exists a = a; such that a ¢ Nil(R), by
Lemma 3.6. Let R = R/Nil(R). Since fog = 0, then fog = 0 in the near-ring
Ry[[x]]. Since R is a reduced ring, it follows that @;b; = 0, by Lemma 3.1. Since R is
Noetherian, then Nil(R) is nilpotent, and so Nil(R)* = 0 for some positive integer
k. Thus akb;? = 0 for each j > 1. Hence there exist integers 0 < ¢; < k such that

akbz-j # 0 but akb;jJr1 =0 for each j > 1. Therefore there exist integers 0 < s; < t;
such that akbjb3% -+ bsn # 0 but a*bj'b5? ---b5rb; = 0 for each 1 < j < n. Let
s =afbirb3? -+ - b3, Thus sg = 0, since (Cy) = (by,...,by). ad

Theorem 3.10. Let R be a non-reduced commutative ring. Then
(1) If R is Noetherian and diam (T g(Ro[z])) = 1, then diam(Ig(Ro[[z]])) = 1.
(2) If diam (T g(Ro[[z]])) = 1, then diam (T g(Ro[z])) = 1.

Proof. (1) Let diam(T'g(Ro[z])) = 1. Then [Tg(R)| < 2, Z(R) = anng(a) for
some a € R, Nil(R)? = 0, and anng(c) = Nil(R) for each ¢ € Z(R) \ Nil(R),
by Theorem 2.9. As shown in the proof of Theorem 2.9, for each ¢ € Nil(R),
anng(c) = Z(R). Assume ¢ € Nil(R) and g = 72, bja’ € Z(Ro[[z]]). Since
Nil(R)? = 0, then cz o g = 0, by Lemma 3.8. Thus annpg,;z)(cz) = Z(Ro[[z]]).
It is clear that r.annpg,y(2?) = 0. Also, we have L.annpg,.)(2?) C Nil(R)o|[x]],
by Lemmas 3.7 and 3.9. Hence annpgy () (z?) = l.annp, . (z?) = Nil(Ro[[z]]),
since Nil(R)? = 0 and Nil(Ro[[z]]) = Nil(R)o[[z]]. Notice that [cz] # [2?],
since 22 € annp,()(cz) \ anng,q(@?). Now suppose that f be a non-zero
element of Z(Ro[[z]]). We can write f = fi + f2 + f3 such that 3, C Nil(R),
C3, C Z(R)\ Nil(R), and C%, C R\ Z(R).

Assume f = f1 =377 aa’ and g = Y272 bja? € Z(Rol[x]]). Hence we have
annp(a;) = Z(R) for each a; € CF, since C3 C Nil(R). Thus fog = 0, since
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Nil(R)? = 0 and by € Z(R), by Lemma 3.8. Therefore annpg2))(f) = Z(Ro[[x]]),
which implies that [f] = [cx].

Suppose that f = fo = 72, a;z" and a4 # 0. Since C C Z(R) \ Nil(R), then
annp(a;) = Nil(R) for each a; € C}. Hence for each g € Nil(R)o[[z]], fog =0
and go f =0. Let g = Zj‘;l bjz? € r.anng,((f). Thus fog = Z;‘;l bifi =0.
Assume that b is the first non-zero coefficient of g. Then b, € anng(a) = Nil(R),
since bal, = 0 and a}, ¢ Nil(R). Hence b;f =0, and so fog =37,  bjf/ =0.
By repeating this argument, one can deduce that b; € Nil(R) for each b; € Cy-
Thus g € Nil(R)o[[x]], and so r.ann g, (f) = Nil(R)o[[z]].

Now suppose that g = Z;}it bjx? € L.anng, . (f), where by # 0. Therefore

gof:Z;‘)iqaigi:O7

which implies that a,bf = 0. Hence b} € anng(a,) = Nil(R), and so b; € Nil(R).
Then bia; = 0 for each a; € Cj, and thus go f = Z;’iq a;gt = 0, where
g1 = Z;o:tﬂ bjz’. Continuing this process one can show that b; € Nil(R) for each
bj € Cy, and so L.annpg () (f) € Nil(R)o[[z]]. Hence annpg, (i) (f) = Nil(R)o[[z]].
Therefore [f] = [f2] = [27].

Iff=fsorf=f+fo(fi #0#f)or f=fi+fs(fi #0F#fs)or

f=1fo+fs(f2#£0# f3)or f = fi+ fo+ f3 (each f; be non-zero), then by
using Lemmas 3.7, 3.9 and a similar argument as used in the proof of Theorem 2.9,

one can show that [f] = [#2] = Nil(R)o[[x]]. Hence |I'g(Ro[[z]])] = 2, and thus
diam (T g(Ro[[]])) = 1.
(2) Tt is clear. O

Proposition 3.11. Let R be a non-reduced commutative ring. Then

(1) If diam(I'(Ro[[z]])) = 3, then anng({a,b}) N Nil(R) = 0 for some
a,b € Z(R).

(2) Let R be a Noetherian ring. If anng({a,b}) N Nil(R) = 0 for some
a,b € Z(R), then diam(F(Ro[[x]])) =3.

Proof. (1) Since diam(T'(Ro[[z]])) = 3, then there exist f,g € Ro[[z]] such that
d(f,g9) = 3. Let a; and b,y be the first non-zero coefficients of f and g, respectively.
On the contrary, suppose that anng({a,b}) N Nil(R) # 0 for each a,b € Z(R).
By Lemma 3.8, we have a;,b, € Z(R). Hence there exists ¢ € Nil(R) such that
ca; = byec = 0. Let ¢" = 0 # ¢"~! for some positive integer . Therefore f—c" 'z —g
is a path in T'(Rg[[x]]), which is a contradiction.

(2) Since R is non-reduced, there exists ¢ € R such that ¢ = 0. It follows
that 22,23 € Z(Ry[[z]]) and 22 0 23 # 0 # 23 o 2. Thus d(z%,23) > 2, and
so diam(I'(Ry[[z]])) > 2. On the contrary, suppose that diam(I'(Ro[[z]])) # 3.
Therefore diam (I'(Ro[[z]])) = 2, by [8, Theorem 2.2]. Let a,b € Z(R). We show
that ax+22, bz +2% € Z(Ro[[x]]). If a*~! # 0 = a* for some positive integer k, then
a*~lzo(azx+2%) = 0. Thus assume that a ¢ Nil(R). Since az,z? € Z(Ry|[z]]) and
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arox? # 0 # x? o ax, then there exists a non-zero nilpotent element f = Zfir et
with ¢, # 0 such that ax — f — 22 is a path. If f o axr = 0, then ac, = 0.
By Lemma 3.6, we have cF~! # 0 = c¥ for some positive integer k. Therefore
= lro(ar+2%) =0. If azo f =0, then c,.a” = 0. Hence there exists 1 <t <r—1

such that c.a® # 0 = c.a'*!, and so c.a’w o (ax + 2?) = 0. Similarly, we have
bz + 22 € Z(Ro[[z]]). Since diam(T'(Ro[[z]])) = 2 and

(ax + 22) o (bx + 2%) # 0 # (bx + 22) o (azx + 2?),

then go(ax+a?) = 0 = go(bw+x?) for some non-zero nilpotent element g, by Lemma
3.9. Let s be the first non-zero coefficient of g. Therefore s € anng({a,b})NNil(R),
which is a contradiction. |

Corollary 3.12. Let R be a non-reduced commutative ring. Then
(1) If R is Noetherian and diam(T'(Ro[z])) = 3, then diam(T'(Ro[[z]])) = 3.
(2) If diam (T (Ro[[z]])) = 3, then diam (T'(Ry[z])) = 3.
Proof. 1t follows from Propositions 2.11 and 3.11. O
Theorem 3.13. Let R be a non-reduced commutative ring. Then
(1) If R is Noetherian and diam (T'(Ro[[z]])) = 3, then diam(I'g(Ro|[z]])) = 3.
(2) If diam(T g(Ro[[z]])) = 3, then diam(I'(Ry[[z]])) = 3.

Proof. (1) By using Lemmas 3.7, 3.9, Proposition 3.11 and a similar argument as
used in the proof of Theorem 2.13, one can prove it.
(2) It is clear. O

Corollary 3.14. Let R be a non-reduced commutative ring. Then
(1) If R is Noetherian and diam (T g(Ro[z])) = 3, then diam(I'g(Ro[[z]])) = 3.
(2) If diam (T g(Ro[[z]])) = 3, then diam (T g(Ro[z])) = 3.

Proof. Tt follows from Theorems 2.13, 3.13 and Corollary 3.12. O

Proposition 3.15. Let R be a non-reduced commutative ring. Then

(1) If diam (T g(Ro[z])) = 2, then diam (T g(Ro[[z]])) = 2.

(2) If R is Noetherian and diam (T g(Ro[[z]])) = 2, then diam(I'g(Ro[z])) = 2
Proof. This follows from Theorem 3.10 and Corollary 3.14. a

Proposition 3.16. Let R be a non-reduced Noetherian commutative ring. If
Z(R) # anng(a) for each a € R, then

diam (T'g(R)) < diam(I'g(Rolz])) < diam (T g(Ro[[x]])).
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Proof.  Clearly, diam(T'g(R)) < diam(Ig(Ro[z])), if diam(I'g(R)) € {0,1}.
Hence suppose that diam(I'g(R)) = 2. Then | I'g(R)) |> 3, which implies that
diam (T g(Ro[z])) > 2, by Theorem 2.9.

Now assume that diam(I'g(R)) = 3. Notice that diam(T'g(Ro[z])) > 2, by
Theorem 2.9. On the contrary, suppose that diam(I'g(Ro[z])) = 2. Thus Z(R)
is an ideal and each pair of zero-divisors has a non-zero annihilator, by Theorem
2.14. Since Z(R) # anng(a) for every a € Z(R), then diam(T'g(R)) = 2, by [12,
Theorem 2.3], which is a contradiction. Hence diam(I'g(R)) < diam(I'g(Ro[z])).

Also, by Corollary 3.14 and Proposition 3.15, we have

diam(I'g(Ro[z])) < diam(Ig(Ro[[z]])).
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