• 제목/요약/키워드: the type of channel doping

검색결과 42건 처리시간 0.031초

Control of Short-Channel Effects in Nano DG MOSFET Using Gaussian-Channel Doping Profile

  • Charmi, Morteza
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.270-274
    • /
    • 2016
  • This article investigates the use of the Gaussian-channel doping profile for the control of the short-channel effects in the double-gate MOSFET whereby a two-dimensional (2D) quantum simulation was used. The simulations were completed through a self-consistent solving of the 2D Poisson equation and the Schrodinger equation within the non-equilibrium Green’s function (NEGF) formalism. The impacts of the p-type-channel Gaussian-doping profile parameters such as the peak doping concentration and the straggle parameter were studied in terms of the drain current, on-current, off-current, sub-threshold swing (SS), and drain-induced barrier lowering (DIBL). The simulation results show that the short-channel effects were improved in correspondence with incremental changes of the straggle parameter and the peak doping concentration.

[ 0.1\;μm ] SOI-MOSFET의 적정 채널도핑농도에 관한 시뮬레이션 연구 (Investigation of Optimal Channel Doping Concentration for 0.1\;μm SOI-MOSFET by Process and Device Simulation)

  • 최광수
    • 한국재료학회지
    • /
    • 제18권5호
    • /
    • pp.272-276
    • /
    • 2008
  • In submicron MOSFET devices, maintaining the ratio between the channel length (L) and the channel depth (D) at 3 : 1 or larger is known to be critical in preventing deleterious short-channel effects. In this study, n-type SOI-MOSFETs with a channel length of $0.1\;{\mu}m$ and a Si film thickness (channel depth) of $0.033\;{\mu}m$ (L : D = 3 : 1) were virtually fabricated using a TSUPREM-4 process simulator. To form functioning transistors on the very thin Si film, a protective layer of $0.08\;{\mu}m$-thick surface oxide was deposited prior to the source/drain ion implantation so as to dampen the speed of the incoming As ions. The p-type boron doping concentration of the Si film, in which the device channel is formed, was used as the key variable in the process simulation. The finished devices were electrically tested with a Medici device simulator. The result showed that, for a given channel doping concentration of $1.9{\sim}2.5\;{\times}\;10^{18}\;cm^{-3}$, the threshold voltage was $0.5{\sim}0.7\;V$, and the subthreshold swing was $70{\sim}80\;mV/dec$. These value ranges are all fairly reasonable and should form a 'magic region' in which SOI-MOSFETs run optimally.

Two-Bit/Cell NFGM Devices for High-Density NOR Flash Memory

  • Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.11-20
    • /
    • 2008
  • The structure of 2-bit/cell flash memory device was characterized for sub-50 nm non-volatile memory (NVM) technology. The memory cell has spacer-type storage nodes on both sidewalls in a recessed channel region, and is erased (or programmed) by using band-to-band tunneling hot-hole injection (or channel hot-electron injection). It was shown that counter channel doping near the bottom of the recessed channel is very important and can improve the $V_{th}$ margin for 2-bit/cell operation by ${\sim}2.5$ times. By controlling doping profiles of the channel doping and the counter channel doping in the recessed channel region, we could obtain the $V_{th}$ margin more than ${\sim}1.5V$. For a bit-programmed cell, reasonable bit-erasing characteristics were shown with the bias and stress pulse time condition for 2-bit/cell operation. The length effect of the spacer-type storage node is also characterized. Device which has the charge storage length of 40 nm shown better ${\Delta}V_{th}$ and $V_{th}$ margin for 2-bit/cell than those of the device with the length of 84 nm at a fixed recess depth of 100 nm. It was shown that peak of trapped charge density was observed near ${\sim}10nm$ below the source/drain junction.

Effect of Counter-doping Thickness on Double-gate MOSFET Characteristics

  • George, James T.;Joseph, Saji;Mathew, Vincent
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권2호
    • /
    • pp.130-133
    • /
    • 2010
  • This paper presents a study of the influence of variation of counter doping thickness on short channel effect in symmetric double-gate (DG) nano MOSFETs. Short channel effects are estimated from the computed values of current-voltage (I-V) characteristics. Two dimensional Quantum transport equations and Poisson equations are used to compute DG MOSFET characteristics. We found that the transconductance ($g_m$) and the drain conductance ($g_d$) increase with an increase in p-type counter-doping thickness ($T_c$). Very high value of transconductance ($g_m=38\;mS/{\mu}m$) is observed at 2.2 nm channel thickness. We have established that the threshold voltage of DG MOSFETs can be tuned by selecting the thickness of counter-doping in such device.

단채널 현상을 줄이기 위한 수직형 나노와이어 MOSFET 소자설계 (Device Design of Vertical Nanowire MOSFET to Reduce Short Channel Effect)

  • 김희진;최은지;신강현;박종태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.879-882
    • /
    • 2015
  • 본 연구에서는 시뮬레이션을 통해 채널 폭과 채널 도핑 형태에 따른 수직형 나노와이어 GAA MOSFET의 특성을 비교, 분석하였다. 첫 번째로, 드레인의 끝부분을 20nm로 고정시키고 소스의 끝부분이 30nm, 50nm, 80nm, 110nm로 식각된 모양으로 설계한 구조의 특성을 비교, 분석하였다. 두 번째로는 드레인, 채널, 소스의 폭이 50nm로 일정한 직사각형 모양의 구조를 설계하였다. 이 구조를 기준으로 삼아 드레인의 끝부분이 20nm가 되도록 식각된 사다리꼴 모양과 반대로 소스의 끝부분이 20nm가 되도록 식각된 역 사다리꼴 모양의 구조를 설계하여 위 세 구조의 특성을 비교, 분석하였다. 마지막으로는 폭 50nm의 직사각형 구조의 채널을 다섯 구간으로 나누어 도핑 형태를 다양하게 변화시킨 것의 특성을 비교, 분석하였다. 첫 번째 시뮬레이션에서는 채널 폭이 가장 작을 때, 두 번째 시뮬레이션에서는 사다리꼴 모양의 구조일 때, 세 번째 시뮬레이션에서는 채널의 중앙 부분이 높게 도핑 되었을 때 가장 좋은 특성을 보였다.

  • PDF

Electrical Characteristics of CMOS Circuit Due to Channel Region Parameters in LDMOSFET

  • Kim, Nam-Soo;Cui, Zhi-Yuan;Lee, Hyung-Gyoo;Kim, Kyoung-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권3호
    • /
    • pp.99-102
    • /
    • 2006
  • The electrical characteristics of CMOS inverter with LDMOSFET are studied for high power and digital circuit application by using two dimensional MEDICI simulator. The simulation is done in terms of voltage transfer characteristic and on-off switching properties of CMOS inverter with variation of channel length and channel doping levels. The channel which surrounds a junction-type source in LDMOSFET is considered to be an important parameter to decide a circuit operation of CMOS inverter. The digital logic levels of input voltage show to increase with increase of n-channel length and doping levels while the logic output levels show to the almost constant.

Analytical Characterization of a Dual-Material Double-Gate Fully-Depleted SOI MOSFET with Pearson-IV type Doping Distribution

  • Kushwaha, Alok;Pandey, Manoj K.;Pandey, Sujata;Gupta, Anil K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권2호
    • /
    • pp.110-119
    • /
    • 2007
  • A new two-dimensional analytical model for dual-material double-gate fully-depleted SOI MOSFET with Pearson-IV type Doping Distribution is presented. An investigation of electrical MOSFET parameters i.e. drain current, transconductance, channel resistance and device capacitance in DM DG FD SOI MOSFET is carried out with Pearson-IV type doping distribution as it is essential to establish proper profiles to get the optimum performance of the device. These parameters are categorically derived keeping view of potential at the center (${\phi}_c$) of the double gate SOI MOSFET as it is more sensitive than the potential at the surface (${\phi}_s$). The proposed structure is such that the work function of the gate material (both sides) near the source is higher than the one near the drain. This work demonstrates the benefits of high performance proposed structure over their single material gate counterparts. The results predicted by the model are compared with those obtained by 2D device simulator ATLAS to verify the accuracy of the proposed model.

Reverse annealing of boron doped polycrystalline silicon

  • Hong, Won-Eui;Ro, Jae-Sang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.140-140
    • /
    • 2010
  • Non-mass analyzed ion shower doping (ISD) technique with a bucket-type ion source or mass-analyzed ion implantation with a ribbon beam-type has been used for source/drain doping, for LDD (lightly-doped-drain) formation, and for channel doping in fabrication of low-temperature poly-Si thin-film transistors (LTPS-TFT's). We reported an abnormal activation behavior in boron doped poly-Si where reverse annealing, the loss of electrically active boron concentration, was found in the temperature ranges between $400^{\circ}C$ and $650^{\circ}C$ using isochronal furnace annealing. We also reported reverse annealing behavior of sequential lateral solidification (SLS) poly-Si using isothermal rapid thermal annealing (RTA). We report here the importance of implantation conditions on the dopant activation. Through-doping conditions with higher energies and doses were intentionally chosen to understand reverse annealing behavior. We observed that the implantation condition plays a critical role on dopant activation. We found a certain implantation condition with which the sheet resistance is not changed at all upon activation annealing.

  • PDF

Nanoscale NAND SONOS memory devices including a Seperated double-gate FinFET structure

  • Kim, Hyun-Joo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제10권1호
    • /
    • pp.65-71
    • /
    • 2010
  • NAND-type SONOS with a separated double-gate FinFET structure (SDF-Fin SONOS) flash memory devices are proposed to reduce the unit cell size of the memory device and increase the memory density in comparison with conventional non volatile memory devices. The proposed memory device consists of a pair of control gates separated along the direction of the Fin width. There are two unique alternative technologies in this study. One is a channel doping method and the other is an oxide thickness variation method, which are used to operate the SDF-Fin SONOS memory device as two-bit. The fabrication processes and the device characteristics are simulated by using technology comuter-adided(TCAD). The simulation results indicate that the charge trap probability depends on the different channel doping concentration and the tunneling oxide thickness. The proposed SDG-Fin SONOS memory devices hold promise for potential application.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • 신새영;문연건;김웅선;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF