Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.5.272

Investigation of Optimal Channel Doping Concentration for 0.1\;μm SOI-MOSFET by Process and Device Simulation  

Choe, Kwang-Su (Dept. of Electronic Materials Engineering, College of Engineering University of Suwon)
Publication Information
Korean Journal of Materials Research / v.18, no.5, 2008 , pp. 272-276 More about this Journal
Abstract
In submicron MOSFET devices, maintaining the ratio between the channel length (L) and the channel depth (D) at 3 : 1 or larger is known to be critical in preventing deleterious short-channel effects. In this study, n-type SOI-MOSFETs with a channel length of $0.1\;{\mu}m$ and a Si film thickness (channel depth) of $0.033\;{\mu}m$ (L : D = 3 : 1) were virtually fabricated using a TSUPREM-4 process simulator. To form functioning transistors on the very thin Si film, a protective layer of $0.08\;{\mu}m$-thick surface oxide was deposited prior to the source/drain ion implantation so as to dampen the speed of the incoming As ions. The p-type boron doping concentration of the Si film, in which the device channel is formed, was used as the key variable in the process simulation. The finished devices were electrically tested with a Medici device simulator. The result showed that, for a given channel doping concentration of $1.9{\sim}2.5\;{\times}\;10^{18}\;cm^{-3}$, the threshold voltage was $0.5{\sim}0.7\;V$, and the subthreshold swing was $70{\sim}80\;mV/dec$. These value ranges are all fairly reasonable and should form a 'magic region' in which SOI-MOSFETs run optimally.
Keywords
SOI-MOSFET; channel doping; short-channel effect; TSUPREM-4; Medici;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. Oshima, S. Cristoloveanu, B. Guillaumot, G. Le Carval, H. Iwai, C. Mazure, M. S. Kang, Y. H. Bae, J. W. Kwon, S. Deleonibus and J. H. Lee, Silicon-on-Insulator Technology and Devices XI, ed. S. Cristoloveanu, G. K. Celler, J. G. Fossum, F. Gamiz, K. Izumi and Y. -W. Kim, PV 2003- 05, p. 45, The Electrochemical Society Proceedings Series, Pennington, NJ (2003)
2 C. Fiegna, H. Iwai, T. Wada, M. Saito, E. Sangiorgi, and B. Ricco, IEEE Trans. Electron Devices, 41, 941 (1994)   DOI   ScienceOn
3 K. Oshima, S. Cristoloveanu, B. Guillaumot, S. Deleonibus and H. Iwai, J. Electrochem. Soc., 151, G257 (2004)   DOI   ScienceOn
4 K. S. Choe, Kor. J. Mater. Res., 15, 613 (2005)   DOI   ScienceOn
5 M. T. Bohr, and Y. A. El-Mansy, IEEE Trans. Electron Devices, 45, 620 (1998)   DOI   ScienceOn
6 J. -P. Colinge, IEEE Electron Device Lett., 7, 244 (1986)   DOI   ScienceOn
7 A. Chaudhry and M. J. Kumar, IEEE Trans. Electron Devices, 4, 99 (2006)
8 M. S. Pavanello, J. A. Martino, V. Dessard, and D. Flandre, Electrochem. and Solid-State Lett., 3, 50 (2000)   DOI   ScienceOn
9 A. E. Schmitz and J. Y. Chen, IEEE Trans. Electron Devices, 33, 148 (1986)   DOI   ScienceOn
10 H. Iwai, IEEE J. Solid-State Circuits, 34, 357 (1999)   DOI   ScienceOn
11 TSUPREM-4, Two-Dimensional Process Simulation Program, Version 6.5, Technology Modeling Associates, Inc., Sunnyvale, California (1997)
12 Medici, Two-Dimensional Device Simulation Program, Version 2.2, Technology Modeling Associates, Inc., Sunnyvale, California (1996)
13 K. Oshima, S. Cristoloveanu, B. Guillaumot, G. Le Carval, S. Deleonibus, H. Iwai, C. Mazure and K. H. Park, Proceedings of the 2002 IEEE International SOI Conference, p. 95 (2002)
14 J. -L. Pelloie, Microelectronic Engineering, 39, 155 (1997)   DOI   ScienceOn
15 R. -H. Yan, A. Ouzmard and K. F. Lee, IEEE Trans. Electron Devices, 39, 1704 (1992)   DOI   ScienceOn
16 S. -H. Oh, D. Monroe and J. M. Hergenrother, IEEE Electron Device Lett., 21, 445 (2000)   DOI   ScienceOn