• Title/Summary/Keyword: sum of random variables

Search Result 121, Processing Time 0.021 seconds

An extension of the hong-park version of the chow-robbins theorem on sums of nonintegrable random variables

  • Adler, Andre;Rosalsky, Andrew
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.363-370
    • /
    • 1995
  • A famous result of Chow and Robbins [8] asserts that if ${X_n, n \geq 1}$ are independent and identically distributed (i.i.d.) random variables with $E$\mid$X_1$\mid$ = \infty$, then for each sequence of constants ${M_n, n \geq 1}$ either $$ (1) lim inf_{n\to\infty} $\mid$\frac{M_n}{\sum_{j=1}^{n}X_j}$\mid$ = 0 almost certainly (a.c.) $$ or $$ (2) lim sup_{n\to\infty}$\mid$\frac{M_n}{\sum_{j=1}^{n}X_j}$\mid$ = \infty a.c. $$ and thus $P{lim_{n\to\infty} \sum_{j=1}^{n}X_j/M_n = 1} = 0$. Note that both (1) and (2) may indeed prevail.

  • PDF

SOME RESULTS ON ASYMPTOTIC BEHAVIORS OF RANDOM SUMS OF INDEPENDENT IDENTICALLY DISTRIBUTED RANDOM VARIABLES

  • Hung, Tran Loc;Thanh, Tran Thien
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.119-128
    • /
    • 2010
  • Let ${X_n,\;n\geq1}$ be a sequence of independent identically distributed (i.i.d.) random variables (r.vs.), defined on a probability space ($\Omega$,A,P), and let ${N_n,\;n\geq1}$ be a sequence of positive integer-valued r.vs., defined on the same probability space ($\Omega$,A,P). Furthermore, we assume that the r.vs. $N_n$, $n\geq1$ are independent of all r.vs. $X_n$, $n\geq1$. In present paper we are interested in asymptotic behaviors of the random sum $S_{N_n}=X_1+X_2+\cdots+X_{N_n}$, $S_0=0$, where the r.vs. $N_n$, $n\geq1$ obey some defined probability laws. Since the appearance of the Robbins's results in 1948 ([8]), the random sums $S_{N_n}$ have been investigated in the theory probability and stochastic processes for quite some time (see [1], [4], [2], [3], [5]). Recently, the random sum approach is used in some applied problems of stochastic processes, stochastic modeling, random walk, queue theory, theory of network or theory of estimation (see [10], [12]). The main aim of this paper is to establish some results related to the asymptotic behaviors of the random sum $S_{N_n}$, in cases when the $N_n$, $n\geq1$ are assumed to follow concrete probability laws as Poisson, Bernoulli, binomial or geometry.

CHARACTERIZATIONS OF THE GAMMA DISTRIBUTION BY INDEPENDENCE PROPERTY OF RANDOM VARIABLES

  • Jin, Hyun-Woo;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • Let {$X_i$, $1{\leq}i{\leq}n$} be a sequence of i.i.d. sequence of positive random variables with common absolutely continuous cumulative distribution function F(x) and probability density function f(x) and $E(X^2)$ < ${\infty}$. The random variables X + Y and $\frac{(X-Y)^2}{(X+Y)^2}$ are independent if and only if X and Y have gamma distributions. In addition, the random variables $S_n$ and $\frac{\sum_{i=1}^{m}(X_i)^2}{(S_n)^2}$ with $S_n=\sum_{i=1}^{n}X_i$ are independent for $1{\leq}m$ < n if and only if $X_i$ has gamma distribution for $i=1,{\cdots},n$.

Weak convergence for weighted sums of level-continuous fuzzy random variables (수준 연속인 퍼지 랜덤 변수의 가중 합에 대한 약 수렴성)

  • Kim, Yun-Kyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.852-856
    • /
    • 2004
  • The present paper establishes a necessary and sufficient condition for weak convergence for weighted sums of compactly uniformly integrable level-continuous fuzzy random variables as a generalization of weak laws of large numbers for sums of fuzzy random variables.

A WEAK LAW FOR WEIGHTED SUMS OF ARRAY OF ROW NA RANDOM VARIABLES

  • Baek, Jong-Il;Liang, Han-Ying;Choi, Jeong-Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.341-349
    • /
    • 2003
  • Let {$x_{nk}\;$\mid$1\;\leq\;k\;\leq\;n,\;n\;\geq\;1$} be an array of random varianbles and $\{a_n$\mid$n\;\geq\;1\}\;and\;\{b_n$\mid$n\;\geq\;1} be a sequence of constants with $a_n\;>\;0,\;b_n\;>\;0,\;n\;\geq\;1. In this paper, for array of row negatively associated(NA) random variables, we establish a general weak law of large numbers (WLLA) of the form (${\sum_{\kappa=1}}^n\;a_{\kappa}X_{n\kappa}\;-\;\nu_{n\kappa})\;/b_n$ converges in probability to zero, as $n\;\rightarrow\;\infty$, where {$\nu_{n\kappa}$\mid$1\;\leq\;\kappa\;\leq\;n,\;n\;\geq\;1$} is a suitable array of constants.

On the Functional Central Limit Theorem of Negatively Associated Processes

  • Baek Jong Il;Park Sung Tae;Lee Gil Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.117-123
    • /
    • 2005
  • A functional central limit theorem is obtained for a stationary linear process of the form $X_{t}= \sum\limits_{j=0}^\infty{a_{j}x_{t-j}}$, where {x_t} is a strictly stationary sequence of negatively associated random variables with suitable conditions and {a_j} is a sequence of real numbers with $\sum\limits_{j=0}^\infty|a_{j}|<\infty$.

A tightness theorem for product partial sum processes indexed by sets

  • Hong, Dug-Hun;Kwon, Joong-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.141-149
    • /
    • 1995
  • Let N denote the set of positive integers. Fix $d_1, d_2 \in N with d = d_1 + d_2$. Let X and Y be real random variables and let ${X_i : i \in N^d_1} and {Y_j : j \in N^d_2}$ be independent families of independent identically distributed random variables with $L(X) = L(X_i) and L(Y) = L(Y_j)$, where $L(\cdot)$ denote the law of $\cdot$.

  • PDF

ON THE STRONG LAW OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY SUPERADDITIVE DEPENDENT RANDOM VARIABLES

  • SHEN, AITING
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.45-55
    • /
    • 2016
  • Let {$X_n,n{\geq}1$} be a sequence of negatively superadditive dependent random variables. In the paper, we study the strong law of large numbers for general weighted sums ${\frac{1}{g(n)}}{\sum_{i=1}^{n}}{\frac{X_i}{h(i)}}$ of negatively superadditive dependent random variables with non-identical distribution. Some sufficient conditions for the strong law of large numbers are provided. As applications, the Kolmogorov strong law of large numbers and Marcinkiewicz-Zygmund strong law of large numbers for negatively superadditive dependent random variables are obtained. Our results generalize the corresponding ones for independent random variables and negatively associated random variables.

STRONG LAWS OF LARGE NUMBERS FOR LINEAR PROCESSES GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.703-711
    • /
    • 2008
  • Let ${{\xi}_k,k{\in}{\mathbb{Z}}}$ be an associated H-valued random variables with $E{\xi}_k$ = 0, $E{\parallel}{\xi}_k{\parallel}$ < ${\infty}$ and $E{\parallel}{\xi}_k{\parallel}^2$ < ${\infty}$ and {$a_k,k{\in}{\mathbb{Z}}$} a sequence of bounded linear operators such that ${\sum}^{\infty}_{j=0}j{\parallel}a_j{\parallel}_{L(H)}$ < ${\infty}$. We define the sationary Hilbert space process $X_k={\sum}^{\infty}_{j=0}a_j{\xi}_{k-j}$ and prove that $n^{-1}{\sum}^n_{k=1}X_k$ converges to zero.