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ON THE STRONG LAW OF LARGE NUMBERS FOR

WEIGHTED SUMS OF NEGATIVELY SUPERADDITIVE

DEPENDENT RANDOM VARIABLES

Aiting Shen

Abstract. Let {Xn, n ≥ 1} be a sequence of negatively superadditive
dependent random variables. In the paper, we study the strong law of

large numbers for general weighted sums 1
g(n)

∑n
i=1

Xi

h(i)
of negatively su-

peradditive dependent random variables with non-identical distribution.
Some sufficient conditions for the strong law of large numbers are pro-
vided. As applications, the Kolmogorov strong law of large numbers and
Marcinkiewicz-Zygmund strong law of large numbers for negatively super-
additive dependent random variables are obtained. Our results generalize
the corresponding ones for independent random variables and negatively
associated random variables.

1. Introduction

As is well known that the Kolmogorov strong law of large numbers and
Marcinkiewicz-Zygmund strong law of large numbers play important roles in
probability limit theory and mathematical statistics, which have been studied
by many authors. It is more interesting to consider a general case. Let g(x) and
h(x) be positive functions defined on (0,∞) such that g(x) is strictly increasing
and limx→∞ g(x) = ∞. It is very desirable to investigate conditions on g, h and
random variables {Xn, n ≥ 1} under which the strong law of large numbers for
weighted sums

(1.1)
1

g(n)

n∑

i=1

Xi

h(i)
→ 0 a.s., as n → ∞
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holds. It is easily seen that the strong law of large numbers of the form (1.1)
embraces the Kolmogorov strong law of large numbers (g(n) = n, h(n) = 1)
and the Marcinkiewicz-Zygmund strong law of large numbers (g(n) = n1/r,
h(n) = 1, 1 < r < 2).

Recently, Jajte [5] gave the sufficient and necessary conditions for (1.1) based
on independent and identically distributed random variables. The main result
of Jajte [5] is as follows.

Theorem A. Let {Xn, n ≥ 1} be a sequence of independent and identically

distributed random variables. Let g(·) be a positive, increasing function and h(·)
a positive function such that φ(y) ≡ g(y)h(y) satisfies the following conditions.

(i) For some d ≥ 0, φ(·) is strictly increasing on [d,∞) with range [0,∞).
(ii) There exist C and a positive integer k0 such that φ(y+ 1)/φ(y) ≤ C for

all y ≥ k0.
(iii) There exist constants a and b such that for all s > d,

φ2(s)

∫ ∞

s

1

φ2(x)
dx ≤ as+ b.

Then the following two conditions are equivalent:
(1) E

[
φ−1(|X1|)

]
< ∞,

(2)

1

g(n)

n∑

i=1

Xi −mi

h(i)
→ 0 a.s., as n → ∞,

where mi = EXiI(|Xi| ≤ φ(i)) and φ−1 is the inverse of function φ.

Inspired by Jajte [5], Jing and Liang [6] extended the result of Jajte [5]
to negatively associated random variables with identical distribution. Meng
and Lin [9], Wang [20] and Tang [13] extended Theorem A to the case of
ρ̃-mixing random variables, non-identically distributed negatively associated
random variables and asymptotically almost negatively associated random vari-
ables, respectively. Sung [12] gave some sufficient conditions to prove the strong
law of large numbers for weighted sums of random variables. The main purpose
of the paper is to extend the result of Theorem A to the case of negatively su-
peradditive dependent random variables, which contains independent random
variables and negatively associated (NA, in short) random variables as special
cases. The main techniques used in the paper are the Khintchine-Kolmogorov
type convergence theorem and the Kolmogorov three series theorem.

Now, let us recall the concept of negatively superadditive dependent random
variables, which was introduced by Hu [4].

Definition 1.1 (cf. Kemperman [8]). A function φ : R
n → R is called

superadditive if φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y) for all x,y ∈ R
n, where ∨

is for componentwise maximum and ∧ is for componentwise minimum.
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Definition 1.2 (cf. Hu, [4]). A random vector X = (X1, X2, . . . , Xn) is said
to be negatively superadditive dependent (NSD) if

(1.2) Eφ(X1, X2, . . . , Xn) ≤ Eφ(X∗
1 , X

∗
2 , . . . , X

∗
n)

holds for every superadditive function φ such that the expectations in (1.2)
exist, where X∗

1 , X
∗
2 , . . . , X

∗
n are independent such that X∗

i and Xi have the
same distribution for each i.

A sequence {Xn, n ≥ 1} of random variables is said to be NSD if for all
n ≥ 1, (X1, X2, . . . , Xn) is NSD.

The concept of NSD random variables was introduced by Hu [4], which was
based on the class of superadditive functions. Hu [4] gave an example illustrat-
ing that NSD does not imply negative association (NA, in sort, see Joag-Dev
and Proschan [7]), and Hu posed an open problem whether NA implies NSD.
Christofides and Vaggelatou [1] solved this problem and indicated that NA
implies NSD. By the Property P2 in Hu [4], we can see that NSD random vari-
ables are negatively orthant dependent (NOD, in short). For more details about
NOD random variables, one can refer to Joag-Dev and Proschan [7] and Wang
et al. [16, 17], Wu [21], Wu and Jiang [22], and so forth. Negatively super-
additive dependent structure is an extension of negatively associated structure
and sometimes more useful than it and can be used to get many important
probability inequalities. Eghbal et al. [2] derived two maximal inequalities and
strong law of large numbers of quadratic forms of NSD random variables under
the assumption that {Xi, i ≥ 1} is a sequence of nonnegative NSD random
variables with EXr

i < ∞ for all i ≥ 1 and some r > 1. Eghbal et al. [3] pro-
vided some Kolmogorov inequality for quadratic forms Tn =

∑
1≤i<j≤n XiXj

and weighted quadratic forms Qn =
∑

1≤i<j≤n aijXiXj, where {Xi, i ≥ 1} is
a sequence of nonnegative NSD uniformly bounded random variables. Shen et
al. [11] studied the almost sure convergence theorem and strong stability for
weighted sums of NSD random variables. Wang et al. [15] obtained complete
convergence for arrays of rowwise NSD random variables and gave application
in nonparametric regression models. Shen et al. [10] presented some appli-
cations of the Rosenthal-type inequality for NSD random variables. Wang et
al. [18] established some general results on complete convergence for weighted
sums of NSD random variables and gave its application in the EV regression
model. Wang and Hu [14] investigated the strong consistency of M -estimates
in linear models for NSD errors, and so forth. In this work, we will further
study the strong law of large numbers for weighted sums (1.1) of NSD random
variables.

Finally, we will present the concept of stochastic domination, which will be
used in this paper.

Definition 1.3. A sequence {Xn, n ≥ 1} of random variables is said to be
stochastically dominated by a random variable X if there exists a positive
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constant C such that

(1.3) P (|Xn| > x) ≤ CP (|X | > x)

for all x ≥ 0 and n ≥ 1.

The organization of this paper is as follows: main results are presented in
Section 2. Some important lemmas and the proofs of the main results are
provided in Section 3 and Section 4, respectively.

Throughout the paper, let C denote a positive constant not depending on
n, which may be different in various places. Let ⌊x⌋ denote the integer part of
x and I(A) be the indicator function of the set A.

2. Main results

In this section, let {Xn, n ≥ 1} be a sequence of NSD random variables,
which is stochastically dominated by a random variable X . Let

mi = EXiI(|Xi| ≤ φ(i))

and φ−1 is the inverse of function φ, where φ is defined in Theorem 2.1. Firstly,
we will extend the sufficient part of Theorem A to the NSD setting.

Theorem 2.1. Let g(·) and h(·) be real positive functions defined on the same

domain (0,∞) such that φ(y) ≡ g(y)h(y) satisfies conditions of (i) and (iii) in
Theorem A. If E

[
φ−1(|X |)

]
< ∞, then

(2.1)

∞∑

n=1

Xn −mn

φ(n)
converges a.s..

If we further assume that g(x) is increasing on its domain, and limx→∞ g(x) =
∞, then

(2.2)
1

g(n)

n∑

i=1

Xi −mi

h(i)
→ 0 a.s., as n → ∞.

In the following, we will provide some sufficient conditions to prove the
strong law of large numbers for the weighted sums (1.1).

Theorem 2.2. Let g(·) and h(·) be real positive functions defined on the same

domain (0,∞) such that φ(y) ≡ g(y)h(y) satisfies the conditions of (i) and (iii)
in Theorem A. If EXn = 0 and E

[
φ−1(|X |)

]
< ∞, then

(2.3)
∞∑

n=1

Xn

φ(n)
converges a.s..

If we further assume that g(x) is increasing on its domain, and limx→∞ g(x) =
∞, then

(2.4)
1

g(n)

n∑

i=1

Xi

h(i)
→ 0 a.s., as n → ∞.
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Theorem 2.3. Let g(·) and h(·) be real positive functions defined on the same

domain (0,∞) such that φ(y) ≡ g(y)h(y) satisfies the conditions of (i) and (iii)
in Theorem A. Suppose that

(2.5)

∫ ∞

r

1

φ(x)
dx ≤ lr/φ(r) for some r ≥ 1 and l > 0.

If E
[
φ−1(|X |)

]
< ∞, then (2.3) holds. If we further assume that g(x) is

increasing on its domain, and limx→∞ g(x) = ∞, then (2.4) holds.

By Theorem 2.2, we can get the Kolmogorov strong law of large numbers and
Marcinkiewicz-Zygmund strong law of large numbers for NSD random variables
as follows.

Corollary 2.1. Let {Xn, n ≥ 1} be a sequence of identically distributed NSD

random variables. If E|X1|
p < ∞ for some 1 ≤ p < 2, then

(2.6)
1

n1/p

n∑

i=1

(Xi − EX1) → 0 a.s., as n → ∞.

If we take g(x) = log x and h(x) = x in Theorem 2.2, then we can get the
following particular case of logarithmic means.

Corollary 2.2. Let {Xn, n ≥ 1} be a sequence of mean zero NSD random

variables, which is stochastically dominated by a random variable X. If E|X | <
∞, then

1

logn

n∑

k=1

Xk

k
→ 0 a.s., as n → ∞.

3. Some useful lemmas

In this section, we will present some important lemmas which will be used
to prove the main results of the paper. The first one is a basic property for
NSD random variables, which was given by Hu [4].

Lemma 3.1 (cf. Hu, [4]). Let (X1, X2, . . . , Xn) be NSD.

(i) (−X1,−X2, . . . ,−Xn) is also NSD.

(ii) If g1, g2, . . . , gn are all nondecreasing functions, then (g1(X1), g2(X2),
. . . , gn(Xn)) is NSD.

Hu [4] established a comparison theorem on moments between the NSD
and independent random variables and pointed out that the Rosenthal maxi-
mal inequality remains true for NSD random variables. By using the Rosen-
thal maximal inequality, we can get the following Khintchine-Kolmogorov type
convergence theorem and Kolmogorov three series theorem for NSD random
variables immediately. The proofs are standard, so we omit the details.

Lemma 3.2 (Khintchine-Kolmogorov type convergence theorem). Let {Xn,

n ≥ 1} be a sequence of NSD random variables. Assume that
∑∞

n=1 V ar(Xn) <
∞. Then

∑∞

n=1(Xn − EXn) converges a.s..
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Lemma 3.3 (Kolmogorov three series theorem). Let {Xn, n ≥ 1} be a sequence

of NSD random variables. Denote X
(c)
n = −cI(Xn < −c) +XnI(|Xn| ≤ c) +

cI(Xn > c), where c is a positive constant. If the following three conditions are

satisfied:
(i)

∑∞

n=1 P (|Xn| > c) < ∞;

(ii)
∑∞

n=1 EX
(c)
n converges;

(iii)
∑∞

n=1 V ar(X
(c)
n ) < ∞,

then
∑∞

n=1 Xn converges a.s..

By the definition of stochastic domination and integration by parts, we can
get the following basic inequalities. The proof is standard, so we omit the
details. One can refer to Wu [21] or Wang et al. [19] for instance.

Lemma 3.4. Let {Xn, n ≥ 1} be a sequence of random variables which is

stochastically dominated by a random variable X. For any α > 0 and b > 0,
the following two statements hold:

(3.1) E|Xn|
αI (|Xn| ≤ b) ≤ C1 [E|X |αI (|X | ≤ b) + bαP (|X | > b)] ,

(3.2) E|Xn|
αI (|Xn| > b) ≤ C2E|X |αI (|X | > b) ,

where C1 and C2 are positive constants. Consequently, E|Xn|
α ≤ CE|X |α.

4. Proofs of the main results

Proof of Theorem 2.1. Denote for n ≥ 1 that

Yn = −φ(n)I(Xn < −φ(n)) +XnI(|Xn| ≤ φ(n)) + φ(n)I(Xn > φ(n)).

By the definition of stochastic domination and the condition E
[
φ−1 (|X |)

]
<

∞, we can see that

∞∑

n=1

P (Xn 6= Yn) =

∞∑

n=1

P (|Xn| > φ(n))

≤ C

∞∑

n=1

P (|X | > φ(n))

= C

∞∑

n=1

P
(
φ−1 (|X |) > n

)

≤ CE
[
φ−1 (|X |)

]
< ∞.(4.1)

Combining (4.1) and Borel-Cantelli lemma, we have

(4.2) P ((Xn 6= Yn) , i.o.) = 0.
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Next, we will consider the series
∑∞

n=1
EY 2

n

φ2(n) . By Cr’s inequality, definition of

stochastic domination, Lemma 3.4 and (4.1), we can get that
∞∑

n=1

EY 2
n

φ2(n)
≤ C

∞∑

n=1

1

φ2(n)

[
EX2

nI(|Xn| ≤ φ(n)) + φ2(n)P (|Xn| > φ(n))
]

≤ C

∞∑

n=1

EX2I(|X | ≤ φ(n))

φ2(n)
+ C

∞∑

n=1

P (|X | > φ(n))

≤ CE

[
∞∑

n=1

X2I(|X | ≤ φ(n))

φ2(n)

]
.(4.3)

Since E
[
φ−1(|X |)

]
< ∞, it follows that φ−1(|X |) < ∞ a.s. and φ(φ−1(|X |)) =

|X |. Hence, we have by the condition (iii) in Theorem A that
∞∑

n=1

X2I(|X | ≤ φ(n))

φ2(n)

=

⌊φ−1(|X|)⌋+1∑

n=1

X2I(|X | ≤ φ(n))

φ2(n)
+

∞∑

⌊φ−1(|X|)⌋+2

X2I(|X | ≤ φ(n))

φ2(n)

≤ ⌊φ−1(|X |)⌋+ 1 +

∞∑

⌊φ−1(|X|)⌋+2

X2

φ2(n)

≤ φ−1(|X |) + 1 +X2

∫ ∞

φ−1(|X|)

1

φ2(x)
dx

≤ (1 + a)φ−1(|X |) + 1 + b,

which implies that

(4.4) E

[
∞∑

n=1

X2I(|X | ≤ φ(n))

φ2(n)

]
≤ (1 + a)E

[
φ−1(|X |)

]
+ 1 + b < ∞.

By (4.3) and (4.4), we have

(4.5)

∞∑

n=1

V ar(Yn)

φ2(n)
≤

∞∑

n=1

EY 2
n

φ2(n)
< ∞.

It is easily seen that {Yn/φ(n), n ≥ 1} is also a sequence of NSD random
variables by Lemma 3.1. Hence, we have by (4.5) and Lemma 3.2 that

(4.6)

∞∑

n=1

Yn − EYn

φ(n)
converges a.s..

Combining (4.2) and (4.6), we can get that
∞∑

n=1

Xn − EYn

φ(n)
converges a.s..
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To complete the proof of (2.1), we only need to show that

∞∑

n=1

φ(n)P (Xn < −φ(n))− φ(n)P (Xn > φ(n))

φ(n)

=
∞∑

n=1

[P (Xn < −φ(n))− P (Xn > φ(n))] converges.(4.7)

Note that
∞∑

n=1

P (|Xn| > φ(n)) =

∞∑

n=1

P (Xn < −φ(n)) +

∞∑

n=1

P (Xn > φ(n)) < ∞,

and
∑∞

n=1 P (Xn < −φ(n)) and
∑∞

n=1 P (Xn > φ(n)) are both nonnegative,
it follows that

∑∞

n=1 P (Xn < −φ(n)) and
∑∞

n=1 P (Xn > φ(n)) are both
convergent, which yield (4.7). This completes the proof of (2.1). Finally,
1

g(n)

∑n

i=1
Xi−mi

h(i) → 0 a.s. follows from (2.1) and Kronecker’s lemma imme-

diately. The proof is complete. �

Proof of Theorem 2.2. Denote for n ≥ 1 that

Zn = −I(Xn/φ(n) < −1) +
Xn

φ(n)
I(|Xn/φ(n)| ≤ 1) + I(Xn/φ(n) > 1)

.
=

(
Xn

φ(n)

)(1)

.

We will apply Lemma 3.3 to the sequence {Xn/φ(n), n ≥ 1}, where c = 1.
Here, {Xn/φ(n), n ≥ 1} is still a sequence of NSD random variables by Lemma
3.1.

By the definition of stochastic domination and the condition E
[
φ−1 (|X |)

]
<

∞, we can see that
∞∑

n=1

P (|Xn|/φ(n) > 1) ≤ C

∞∑

n=1

P (|X | > φ(n))

= C

∞∑

n=1

P
(
φ−1 (|X |) > n

)

≤ CE
[
φ−1 (|X |)

]
< ∞.(4.8)

Similar to the proof of (4.3)-(4.5), we can get that

∞∑

n=1

V ar(Zn) ≤
∞∑

n=1

EZ2
n

≤ C

∞∑

n=1

[
1

φ2(n)
EX2

nI(|Xn| ≤ φ(n)) + P (|Xn| > φ(n))

]

< ∞.(4.9)
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Finally, we will show that

(4.10)

∞∑

n=1

EZn converges.

By (4.8) and Borel-Cantelli lemma, we have

P ({|Xn|/φ(n) > 1}, i.o.) = 0

and
∞∑

n=1

|Xn|

φ(n)
I(|Xn|/φ(n) > 1) < ∞ a.s.,

which imply that

(4.11)

∞∑

n=1

E |Xn/φ(n)| I(|Xn|/φ(n) > 1) < ∞.

Thus, we have by EXn = 0, (4.8) and (4.11) that

∞∑

n=1

|EZn| ≤

∞∑

n=1

P (|Xn|/φ(n) > 1) +

∞∑

n=1

E |Xn/φ(n)I(|Xn|/φ(n) ≤ 1)|

≤

∞∑

n=1

P (|Xn|/φ(n) > 1) +

∞∑

n=1

E |Xn/φ(n)| I(|Xn|/φ(n) > 1)

< ∞.(4.12)

Therefore, the desired result (2.3) follows from (4.8), (4.9), (4.12) and Lemma
3.3 immediately, and (2.4) follows (2.3) and Kronecker’s lemma. This completes
the proof of the theorem. �

Proof of Theorem 2.3. We use the same notations as that in Theorem 2.2. Ac-
cording to the proof of Theorem 2.2, we can see that in order to prove (2.3)
and (2.4), we only need to show (4.10). Actually, by (2.5), (4.8) and Lemma
3.4, we have

∞∑

n=1

|EZn| ≤ C

∞∑

n=1

1

φ(n)
E|X |I(|X | ≤ φ(n)) + C

∞∑

n=1

P (|X | > φ(n))

≤ C

∞∑

n=1

1

φ(n)

n∑

j=1

E|X |I
(
j − 1 < φ−1(|X |) ≤ j

)

≤ C

∞∑

n=1

1

φ(n)

n∑

j=1

φ(j)P
(
j − 1 < φ−1(|X |) ≤ j

)

= C
∞∑

j=1

φ(j)P
(
j − 1 < φ−1(|X |) ≤ j

) ∞∑

n=j

1

φ(n)
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≤ C

∞∑

j=1

φ(j)P
(
j − 1 < φ−1(|X |) ≤ j

) [ 1

φ(j)
+

∫ ∞

j

1

φ(x)
dx

]

≤ C

∞∑

j=1

jP
(
j − 1 < φ−1(|X |) ≤ j

)

≤ C

∞∑

n=1

P
(
φ−1(|X |) ≥ n

)

≤ CE
[
φ−1(|X |)

]
< ∞.

This completes the proof of the theorem. �

Proof of Corollary 2.1. Without loss of generality, we assume that EX1 = 0.
Thus, in order to prove (2.6), we only need to show that

(4.13)
1

n1/p

n∑

i=1

Xi → 0 a.s., as n → ∞.

Take

g(x) = x1/p, 0 < p < 2, x ∈ (0,∞);

h(x) = 1, x ∈ (0,∞);

φ(x) = g(x)h(x), x ∈ (0,∞), φ(0) = 0.

It is easily seen that the conditions of Theorem 2.2 are satisfied. Hence, the
desired result (4.13) follows from Theorem 2.2 immediately. This completes
the proof of the corollary. �
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