1 |
T. C. Christofides and E. Vaggelatou, A connection between supermodular ordering and positive/negative association, J. Multivariate Anal. 88 (2004), no. 1, 138-151.
DOI
|
2 |
N. Eghbal, M. Amini, and A. Bozorgnia, Some maximal inequalities for quadratic forms of negative superadditive dependence random variables, Statist. Probab. Lett. 80 (2010), no. 7-8, 587-591.
DOI
|
3 |
N. Eghbal, On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables, Statist. Probab. Lett. 81 (2011), no. 8, 1112-1120.
DOI
|
4 |
T. Z. Hu, Negatively superadditive dependence of random variables with applications, Chinese J. Appl. Probab. Statist. 16 (2000), no. 2, 133-144.
|
5 |
R. Jajte, On the strong law of large numbers, Ann. Probab. 31 (2003), no. 1, 409-412.
DOI
|
6 |
B. Y. Jing and H. Y. Liang, Strong limit theorems for weighted sums of negatively associated random variables, J. Theoret. Probab. 21 (2008), no. 4, 890-909.
DOI
|
7 |
K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Statist. 11 (1983), no. 1, 286-295.
DOI
|
8 |
J. H. B. Kemperman, On the FKG-inequalities for measures on a partially ordered space, Nederl. Akad. Wetensch. Proc. Ser. A 80 (1977), no. 4, 313-331.
|
9 |
Y. J. Meng and Z. Y. Lin Strong laws of large numbers for -mixing random variables, J. Math. Anal. Appl. 365 (2010), no. 2, 711-717.
DOI
|
10 |
A. T. Shen, Y. Zhang, and A. Volodin, Applications of the Rosenthal-type inequality for negatively superadditive dependent random variables, Metrika 78 (2015), no. 3, 295-311.
DOI
|
11 |
Y. Shen, X. J. Wang, W. Z. Yang, and S. H. Hu, Almost sure convergence theorem and strong stability for weighted sums of NSD random variables, Acta Math. Sin. English Series 29 (2012), no. 4, 743-756.
DOI
|
12 |
S. H. Sung, On the strong law of large numbers for weighted sums of random variables, Comput. Math. Appl. 62 (2011), no. 11, 4277-4287.
DOI
|
13 |
X. F. Tang, Some strong laws of large numbers for weighted sums of asymptotically almost negatively associated random variables, J. Inequal. Appl. 2013 (2013), Article ID 4, 11 pages.
DOI
|
14 |
X. H. Wang and S. H. Hu, On the strong consistency of M-estimates in linear models for negatively superadditive dependent errors, Aust. New Zealand J. Stat. 57 (2015), no. 2, 259-274.
DOI
|
15 |
X. J. Wang, X. Deng, L. L. Zheng, and S. H. Hu, Complete convergence for arrays of rowwise negatively superadditive dependent random variables and its applications, Statistics 48 (2014), no. 4, 834-850.
DOI
|
16 |
X. J. Wang, S. H. Hu, A. Shen, and W. Z. Yang, An exponential inequality for a NOD sequence and a strong law of large numbers, Appl. Math. Lett. 24 (2011), no. 2, 219-223.
DOI
|
17 |
X. J. Wang, S. H. Hu, and W. Z. Yang, Complete convergence for arrays of rowwise negatively orthant dependent random variables, RACSAM 106 (2012), no. 2, 235-245.
DOI
|
18 |
X. J. Wang, A. T. Shen, Z. Y. Chen, and S. H. Hu, Complete convergence for weighted sums of NSD random variables and its application in the EV regression model, TEST 24 (2015), no. 1, 166-184.
DOI
|
19 |
X. J. Wang, C. Xu, T.-C. Hu, A. Volodin, and S. H. Hu, On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models, TEST 23 (2014), no. 3, 607-629.
DOI
|
20 |
Z. Z. Wang, On strong law of large numbers for dependent random variables, J. Inequal. Appl. 2011 (2011), Article ID 279754, 13 pages.
DOI
|
21 |
Q. Y. Wu, A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables, J. Inequal. Appl. 2012 (2012), Article ID 50, 10 pages.
DOI
|
22 |
Q. Y. Wu and Y. Y. Jiang, The strong consistency of M estimator in a linear model for negatively dependent random samples, Comm. Statist. Theory Methods 40 (2011), no. 3, 467-491.
DOI
|