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Abstract

The present paper establishes a necessary and sufficient condition for weak convergence for weighted sums of
compactly uniformly integrable level-continuous fuzzy random variables as a generalization of weak laws of large

numbers for sums of fuzzy random variables.
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Since Puri and Ralescu [14] introduced the concept of
a fuzzy random variable, there has been increasing
interests in limit theorems for fuzzy random variables.
Statistical inference for fuzzy probability models led to
the need for laws of large numbers in order to ensure
consistence in estimation problems. Strong laws of large
numbers for sums of independent fuzzy random variables
have been studied by several researchers. For example,
Inoue [2], Joo [4}, Joo and Kim [7], Kim {10, 11],
Klement et al. [12], Molchanov [13], Uemura [17] and so
on. On the other hand, weak laws of large numbers for
sums of fuzzy random variables have been studied by
Joo [5], Taylor et al. [16].

It 1s one of significant problems how we can
generalize the above results for sums of fuzzy random
variables to the case of weighted sums.

Related to this problem, Joo et al. [8] obtained strong
convergence for weighted sums of fuzzy random
variables under stochastic geometric condition. But as far
as I know, there is no results for weak convergence for
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Fuzzy numbers, Fuzzy random variables, Strong law of large numbers, Weak law of large number,

weighted sums of fuzzy random variables as yet.

The purpose of this paper is to obtain some results on
weak convergence for weighted sums of level-continuous
fuzzy random variables. Section 2 is devoted to describe
basic facts for fuzzy numbers. The main results are
given in section 3.

2. Preliminaries

Let K(R?) be the family of all non-empty compact
and convex subsets of K?. Then K(R*?) is metrizable
by the Hausdorff metric % defined by

(A, B) = max {sup ,.4inf ,cgla— &,

Sup pepinf ,c4la— 4},

where |+ | is the usual norm in R?.

A nomm of A= K(R?) is defined by

AT =#(A,{0D)=sup ,enlal.

It is well known that the metric (K(R?),h) is
complete and separable (See Debreu [1]1). The addition

and scalar multiplication on K(R?) are defined as usual;

APB={a+b|acA,beB}, JA={la| acA}.



Let F(R?) denote the space of fuzzy numbers in R,
ie, the family of all normal, fuzzy convex and

upper-semicontinuous fuzzy sets u in R? such that

supp u = ¢l (x€R? : u(x) > 0}

is compact. For a fuzzy set u in K?, we define the @
- level set of # by

_ {{x: u(x) = a}, 0<e<l,

Lou supp u, a=0.

a

Then it follows that # & F(R?) if and only if
Lu € K(R?) for each ¢ € [0,1].

Lemma 2.1. For u e F(R?), let us define
fi :[0,11 — ((K(R”),h) by f(a) =L,u

Then the followings hold;

(1) f, is non-increasing; ie, a < B implies

fla) D 1.(B).
(2) £, is left-continuous on (0, 1].
(3) f, has right-limits on [0,1) and is right
continuous at 0.

Conversely, if g :[0,11 — ((K(R?),h) is a
function satisfying the above conditions (1) - (3), then

there exists a unique v € F(R®) such that
gla)=Lw for all @ € [0,1].
Proof: See Joo and Kim [6].

If we denote the right-limit of f, at @ € [0,1) by
L ,-u, then

L u-=cl{xeR": u(x)>a}.

If f, is continuous on [0, 1], then w=F(R?) is
We denote by F(R?) the

family of all level-continuous u< F(R?).

called level-continuous

The addition and scalar multiplication on F(R?) are
defined as usual;
(u®v)(x) = sup ,.,. min(u(y), v(2)),
_ulx/2), if A0
where 0= 1 (, is the indicator function of {0}.
Then it is well-known that for each a<[0,1],
L (u®v)= L, uDL v
and
L (Auw)= AL u.

Now, the uniform metric d., on F(R?) is defined by

L
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do(u,v) = 8Up gzuey (L, u,L,0).
Also, the norm of = F(R?) is defined as
Il = delu, I ) =sup ,ep, | x| .
Then it is well-known that (F(R?),d.) is complete,
but is not separable. (See Klement et al. [12]). However,
(F-(R?),d,) is complete and separable (See Choi et
al. [3]).

3. Main Results

Let (R, F,P) be a probability space. A set-valued
function X : 2 — (K(R?),h) is called a random set
if it is measurable.

A random set X is called integrably bounded if
E|l X} < oo, The expectation of integrably bounded
random set X is defined by

E(X)={E(® | £&eL(L,R") and

AweX(w) a.s.},
where L(2,R?) denotes the class of all R?- valued
random variables & such that E|& < oo,

A fuzzy number valued function X : 2 — F(R?) is
called a fuzzy random variable if for each a<[0,1],
L, X is a random set.

If X: Q— (F(R?"),d,) is measurable, then it is
fuzzy random variable. But the converse is not true (For
details, see Kim [9]). Nevertheless, if we restrict our

concern to F C(R” )-valued case, then these conditions
2 — FJ(R") is a fuzzy
only if X : Q-

are equivalent, ie, X :
random  variable if and

(F-(R?),d,) is measurable.

A fuzzy random variable X is called integrably
bounded if EIXI| The

integrably bounded fuzzy random variable X is a fuzzy
number defined by

E(X)(x) = sup{e<[0,1] | x€ E(L,X)}.

{ o, expectation of

X, Y are

It is well-known that if
bounded, then

(1) L E(X) =E(L/X) for al e=[0,1].

(2) EX®Y) = E(X)DE(Y).

(3) EQAX) = AE(X).

(4) if Xe F(R?) as., then E(X)e F(R?).

integrably

In this
level-continuous fuzzy random variables, ie, F{R?)

paper, we restrict our concerns 1o

-valued fuzzy random variables.
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Let {X,} be a sequence of level-continuous fuzzy
random variables and let {)\,} be a double array of real

numbers satisfying Z | A; | < C for each n and for

some constant C. We consider the following three
statements;

(A) doo(EBntzlll m‘X,‘,@”{:l/l niE( Xl)) - 0
in probability as n—oo.

(B): For each a € [0,1],
h(Eanﬁl/1 m'LaXi’ @ni=1/l niE(LaXi)) — 0
in probability n-—oco.

(C): For each rational & € [0,1],
WMD"\ A il X, @14 E(L, X)) — 0
in probability n—oco0.

It is obvious that (A) implies (B) and (B) implies

(C). Thus, the purpose of this paper is to find the
condition guaranteeing that (C) implies (A). To this end,
we need the following concepts.

Definition 3.1. Let {X,} be a
level-continuous fuzzy random variables.

sequence of

(1) { X,} is said to be tight if for each &>0, there
exists a compact subset A of (F (R?),d.)
such that P(X,€A)<e for all =,

(2) { X,} is said to be compactly uniformly integrable
if for each €0, there exists a compact subset A

of (Fc(R?),d,) such that
f | X, I dP < «forall n.
{X,eA)

Qur first main result is as follows;

Theorem 32. Let {X,} be a sequence of

level-continuous fuzzy random variables. If { X,} is
compactly uniformly integrable, then (C) implies (A).

To prove this, we need some lemmas.

Lemma 3.3. Let K be a subset of (Fc(R?),d.).
Then K is

SUDy c Kk I U’I

relatively compact if and only if
< 00
and

lim sup,  x ¢ (u,8) =0
d—0

where ¢ (u,8) = sup | ,_z| < sh (Lyu, Lyu).

Proof: See Theorem 3.7 of Choi et al. [3].
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Now, for u=F(R?) and a positive integer m, if we
define

9m (’U,) = S’U,p{Ol 1 = A[’k/m’u‘eB (1 _A)L(k—l)/muv
0<A<1andk=1,..,m},
then for (k—1)/m < o < k/m,

La 9 (’LL) = (1 —k+ma )Lk/mu@ (k —mo )L(k—l)/mu-
It follows that
g (udv) = g, (u)Bg,, (v)

and
g (M) = Ag,, (u).

Lemma 3.4. If K is a relatively compact subset of
(F-(R"),d.), then

lim sup, e gl (U, gm (u)) = 0.

m—oo

Proof: For each m and (k—1)/m < a < k/m,
R (Lo, Logm (W) < B (Lg_ 1y pmts Ly ptt)
< ¢(u, 1/m).
Thus, by Lemma 3.3,
lim sup, ¢ xdoo (1, g (u))

m— oo

< lim sup, ¢ x¢ (u,1/m) =0. QED.

m— oo

Proof of Theorem 3.2: It suffices to prove the
theorem for C=1. Let ¢ >0 and 0 < § < 1 be given.

By compact uniform integrability of {X .}, we can
choose a compact subset A of (Fs(R?),d,) such that
. | X, I dP < &6/12 for all =.

3.1) f{X ]

We may assume that 0€A. If we let
E=A®(—1)A= {u®(—1)v |uv € A},

then K is compact and 0= K. Since the convex hull
of K is relatively compact by Lemma 3.3, we may
assume that K is convex without loss of generality.
Also, (3,1) implies that

c2 [ I X, dP < e8/12 for all n.
{ X,eK}

By Lemma 3.4, we can choose m such that
(33) do(u,g,(u)) <eb foralue K
Let us denote

Yi=IxenX and Z=IyxenX.
Then X, = Y, ®Z.
We note that by construction of K, we have
E(Y;,) e K and @%_ 4 ,F(Y) € K.
Thus, by (3.3),
(34) do(D"212 EY,;, 2, (D" 2 EY))<el6.
Then by (3.1) and (3.3), we have

dor(®" 1A E(X ), 8,( D711 A HEX)))

"



A

dm(@ns=1A m‘E(Zi)»gm(@ni:lA LEXZD)) + €/6
230 14,1 IEZ) 1 + eff
< &8/6 + €/6 < &/3

IA

Hence we obtain
doo( D21 A X, B2 A (X))
< do(@% )4, X, DA g a(XD)
+ do(D%o 4,8, (XD, DA g (E(X))+ el3.
This implies that
Pldo (D" 1A X, DA LEX D) e)
< Pld(D% 14 ,X,, D14 ,2,(X))>e/3} +
Pldo{D"_ 14 ,8,(X), D% 4 ,8,(EXD)>e/3}
= () + (ID).
For (I). by using (3.2), (3.3) and (34), we have
(D) £ Pldo(D"_ A ,Z;, 8, (D%, ,Z)>el6}
< PRI A .Z: N >e/6)

S%E,, Ganifl/l m‘Zz' ”

_1_2_ H
<SS 2L ENZ) < s

Now for (II), since g, (F(X)) = E(g, (X)), we

have
(1D
= P{SUD 0:<k€mh(@ﬂi— 1/2 m'L k/le"

EBni-“—lA niE(L k/mXi))>e/3}
= ;()Ij{h(GD”i=1/1 niL k/mXi,

@ i=1/i niE(L k/mXi))> 3(m+ 1) }
< 9
for sufficiently large n from the assumption (C).

This completes the proof. Q.E.D.

Let {X,} be a
level-continuous fuzzy random variables. If { X,} is
tight and sup,E | X, | " < o for some r > 1, then (C)
implies (A).

Corollary 3.5. sequence of

Proof: This follows from the fact that tightness and r
-th (r> 1) moment condition implies compact uniform
integrability. Q.E.D.

The next example shows that tightness and 1-st
moment condition do not imply compact uniform
integrability.

Example. Let u€F (R?) be a fixed fuzzy set with

lu] =1. I {X,} is a sequence of fuzzy random

AAxodA0
F=FAE0l

&

X iy W0l JbE Fofl s *5EHA

variables such that
P(X,=nu)=1/m and P(X,=0)=1—1/n,
then { X,} is tight and E| X,|] =1.
But for each compact subset K of (F.(R?),d.),
there exists a n such that nu & K. Hence,

[ | X,I dP = 1 for all n.
{X,eA}

However, we can obtain similar results by requiring
identical distribution.

Corollary 36. let {X,} be a
level-continuous fuzzy random variables. If { X,} is
identically distributed and £ | X; | < oo, then (C)

implies (A).

sequence of

Proof: Note that if { X,} is identically distributed,
then it is tight. Thus for each n, we can choose a

compact subset K, of (F(R?),d,) such that
PlX, € K,) <1/

Then I x o n;—0 almost uniformly as n—>co. By
Lebesgue dominated convergence, we have

f I X, dP — 0 as n—oo.
{ X,e€K,}

Hence, for cach € > 0, there exists a compact subset

K of (Fo(R?),d.,) such that for all n,

| I X1 aP = [ I X, aP < e
{X,eK} { X, eK)

which implies compact uniform integrability of { X, }.
This completes the proof. Q.E.D.
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