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CHARACTERIZATIONS OF THE GAMMA
DISTRIBUTION BY INDEPENDENCE PROPERTY OF

RANDOM VARIABLES

Hyun-Woo Jin* and Min-Young Lee**

Abstract. Let {Xi , 1 ≤ i ≤ n} be a sequence of i.i.d. sequence of
positive random variables with common absolutely continuous cu-
mulative distribution function F (x) and probability density func-
tion f(x) and E(X2) < ∞. The random variables X + Y and
(X−Y )2

(X+Y )2
are independent if and only if X and Y have gamma dis-

tributions. In addition, the random variables Sn and

∑m
i=1(Xi)

2

(Sn)2

with Sn =
∑n

i=1 Xi are independent for 1 ≤ m < n if and only if
Xi has gamma distribution for i = 1, · · · , n.

1. Introduction

Let {Xi , 1 ≤ i ≤ n} be independent and identically distributed(i.i.d.)
non-degenerate and positive random variables with common absolutely
continuous cumulative distribution function F (x).

Let X and Y be two independent non-degenerate positive random
variables. It is known that X/Y and X +Y are independent if and only
if X and Y are gamma distributions with the same scale parameter as
used in Lukacs(1955). By using the moment, Findeisen(1978) character-
ized the gamma distribution. Also, Hwang and Hu(1999) also proved a
characterization of the gamma distribution by the independence of the
sample mean and the sample coefficient of variation. Recently, Lee and
Lim(2009) presented characterizations of gamma distribution with the
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property that the random variables XiXj

(Σn
k=1Xk)2

and Σn
k=1Xk are indepen-

dent for 1 ≤ i < j ≤ n if and only if Xi has gamma distribution for
i = 1, · · · , n.

In this paper, we obtain the characterizations of the gamma distri-
bution by independence property of the quotient of sum and difference
of random variables.

2. Results

Theorem 2.1. Let X and Y be nondegenerate and positive i.i.d.
random variables with common absolutely continuous cumulative distri-
bution function F (X) and E(X2) < ∞. The random variables X + Y

and
(X − Y )2

(X + Y )2
are independent if and only if X and Y have gamma

distributions.

Theorem 2.2. Let {Xi , 1 ≤ i ≤ n} be nondegenerate and positive
i.i.d. random variables with common absolutely continuous cumulative
distribution function F (X) and E(X2) < ∞. The random variables Sn

and
Σm

i=1(Xi)2

(Sn)2
are independent for 1 ≤ m < n, where Sn = Σn

i=1Xi if

and only if Xi has gamma distribution for i = 1, · · · , n.

3. Proofs

Proof of Theorem 2.1. Since
(X − Y )2

(X + Y )2
is a scale-invariant statis-

tic,
(X − Y )2

(X + Y )2
and X +Y are independent [see Lukacs and Laha(1963)].

We have to prove the reverse. We denote the characteristic functions

of X+Y ,
(X − Y )2

(X + Y )2
and

(
X+Y ,

(X − Y )2

(X + Y )2

)
by φ1(t), φ2(s) and φ(t, s),

respectively. The independence of X +Y and
(X − Y )2

(X + Y )2
is equivalent to

(3.1) φ(t, s) = φ1(t) · φ2(s).

The left hand side of (3.1) becomes

φ(t, s) =
∫ ∞

0

∫ ∞

0
exp

(
it(x + y) +

is(x− y)2

(x + y)2

)
dF (x)dF (y).
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Also the right hand side of (3.1) becomes

φ1(t) · φ2(s) =
∫ ∞

0

∫ ∞

0
exp

(
it(x + y)

)
dF (x)dF (y)

·
∫ ∞

0

∫ ∞

0
exp

(
is(x− y)2

(x + y)2

)
dF (x)dF (y).

Then (3.1) gives
∫ ∞

0

∫ ∞

0
exp

(
it(x + y) +

is(x− y)2

(x + y)2

)
dF (x)dF (y)

=
∫ ∞

0

∫ ∞

0
exp

(
it(x + y)

)
dF (x)dF (y)

·
∫ ∞

0

∫ ∞

0
exp

(
is(x− y)2

(x + y)2

)
dF (x)dF (y).

(3.2)

The integrals in (3.2) exist not only for reals t and s but also for complex
values t = u + iv, s = u∗ + iv∗, where u and u∗ are reals, for which
v = Im(t) ≥ 0, v∗ = Im(s) ≥ 0 and they are analytic for all t, s for
v = Im(t) > 0, v∗ = Im(s) > 0, [see, Lukacs(1955)].

Differentiating (3.2) two times with respect to t and then one time
respect to s and setting s = 0, we get

∫ ∞

0

∫ ∞

0
(x− y)2 exp

(
it(x + y)

)
dF (x)dF (y)

= θ

∫ ∞

0

∫ ∞

0
(x + y)2 exp

(
it(x + y)

)
dF (x)dF (y)

(3.3)

where

θ = E

[(X − Y

X + Y

)2
]
.

The random variable θ is bounded and the moments exists. Then we
know that

(3.4) θ = E

[(X − Y

X + Y

)2
]

= E

[(
1− 2

1 + X2+Y 2

2XY

)]
.

Note that, for x > 0 and y > 0, 0 < 2xy ≤ x2 + y2 and the equality
on the right hand side occurs only if x = y. By the assumed continuity
of F (x), we find P(x = y) = 0 and 1 < x2+y2

2xy < ∞. It follows 0 < θ < 1
by (3.4) .

Let ϕ(t) be the characteristic function of F (x). Then
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ϕ′(t) = i

∫ ∞

0
x exp

(
itx

)
dF (x), ϕ′′(t) = −

∫ ∞

0
x2 exp

(
itx

)
dF (x).

Expressing (3.3) as a differential equation for the characteristic func-
tion ϕ(t), we get

ϕ′′(t)ϕ(t)− 2(ϕ′(t))2 + ϕ(t)ϕ′′(t) = θ[ϕ′′(t)ϕ(t) + 2(ϕ′(t))2 + ϕ(t)ϕ′′(t)].

That is,
ϕ′′(t)
ϕ′(t)

=
(

1 + θ

1− θ

)
ϕ′(t)
ϕ(t)

, 0 < θ < 1.

After integrating with the initial conditions ϕ(0) = 1, ϕ′(0) = iE(X),
we get

(3.5) ϕ′(t) = iE(X)(ϕ(t))
1+θ
1−θ ,

1 + θ

1− θ
> 1.

The solution of this differential equation (3.5) with the above initial
conditions is

ϕ(t) = (1− iE(X)
λ

t)−λ, λ =
1− θ

2θ
> 0.

Consequently, F (x) is a gamma distribution.

Proof of Theorem 2.2. Since
Σm

i=1(Xi)2

(Sn)2
is a scale-invariant statis-

tic,
Σm

i=1(Xi)2

(Sn)2
and Sn are independent [see Lukacs and Laha(1963)].

We have to prove the reverse. We denote the characteristic func-

tions of Sn,
Σm

i=1(Xi)2

(Sn)2
and

(
Sn,

Σm
i=1(Xi)2

(Sn)2

)
by φ1(t), φ2(s) and φ(t, s),

respectively. The independence of Sn and
Σm

i=1(Xi)2

(Sn)2
is equivalent to

(3.6) φ(t, s) = φ1(t) · φ2(s).

The left hand side of (3.6) becomes

φ(t, s) =
∫ ∞

0
· · ·

∫ ∞

0
exp

[
it

(
Sn

)
+

is
(
Σm

i=1(Xi)2
)

(
Sn

)2

]
dF (x1) · · · dF (xn).



Characterizations of the gamma distribution 161

Also the right hand side of (3.6) becomes

φ1(t) · φ2(s) =
∫ ∞

0
· · ·

∫ ∞

0
exp

[
it(Sn)

]
dF (x1) · · · dF (xn)

·
∫ ∞

0
· · ·

∫ ∞

0
exp

[
is

(
Σm

i=1(Xi)2
)

(Sn)2

]
dF (x1) · · · dF (xn).

Then (3.6) gives
∫ ∞

0
· · ·

∫ ∞

0
exp

[
it

(
Sn

)
+

is
(
Σm

i=1(Xi)2
)

(
Sn

)2

]
dF (x1) · · · dF (xn)

=
∫ ∞

0
· · ·

∫ ∞

0
exp

[
it(Sn)

]
dF (x1) · · · dF (xn)

·
∫ ∞

0
· · ·

∫ ∞

0
exp

[
is

(
Σm

i=1(Xi)2
)

(
Sn

)2

]
dF (x1) · · · dF (xn).

(3.7)

The integrals in (3.7) exist not only for reals t and s but also for
complex values t = u + iv, s = u∗ + iv∗, where u and u∗ are reals, for
which v = Im(t) ≥ 0, v∗ = Im(s) ≥ 0 and they are analytic for all t, s
for v = Im(t) > 0, v∗ = Im(s) > 0, [see, Lukacs(1955)].

Differentiating (3.7) two times with respect to t and then one time
respect to s and setting s = 0, we get∫ ∞

0
· · ·

∫ ∞

0
(Σm

i=1(Xi)2) exp
[
it(Sn)

]
dF (x1) · · · dF (xn)

= θ

∫ ∞

0
· · ·

∫ ∞

0
(Sn)2exp

[
it(Sn)

]
dF (x1) · · · dF (xn)

(3.8)

where

θ = E

[(Σm
i=1(Xi)2

(Sn)2
)]

.

The random variable θ is bounded and the moments exist. Then we
know that

θ = E

[((X2)2 + · · ·+ (Xm+1)2

(Sn)2
)]

= E

[((X1)2 + (X3)2 · · ·+ (Xm+1)2

(Sn)2
)]

= · · · = E

[((Xn−m+1)2 + · · ·+ (Xn)2

(Sn)2
)]

for i.i.d. random variables X1, · · · , Xn. Then

(3.9) nCm θ = E
[(n−1Cm−1 Σn

i=1X
2
i

(Sn)2
)]

= E
[( n−1Cm−1

1 + 2Σ1≤i<j≤nXiXj

Σn
i=1X

2
i

)]
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Note that, for x1, · · · xn > 0, the relation 0 < 2Σ1≤i<j≤n xi xj ≤ (n−
1)(x2

1 + · · · + x2
n) holds and the equality on the right hand side occurs

only if x1 = · · · = xn. By the assumed continuity of F (x) we find
P(x1 = · · · = xn) = 0 and 0 <

2Σ1≤i<j≤n xi xj

x2
1+··· +x2

n
< n − 1. It follows that

m
n2 < θ < m

n by (3.9).
Let ϕ(t) be the characteristic function of F (x). Then

ϕ′(t) = i

∫ ∞

0
x exp[itx]dF (x), ϕ′′(t) = −

∫ ∞

0
x2 exp[itx]dF (x).

Expressing (3.8) as a differential equation for the characteristic func-
tion ϕ(t), we get

mϕ′′(t)(ϕ(t))n−1 = θ
[
nϕ′′(t)(ϕ(t))n−1 + 2 · nC2(ϕ′(t))2(ϕ(t))n−2

]
.

That is,
ϕ′′(t)
ϕ′(t)

=
(

2 · nC2 · θ
m− nθ

)
ϕ′(t)
ϕ(t)

,
m

n2
< θ <

m

n
.

After integrating with the initial conditions ϕ(0) = 1, ϕ′(0) = iE(X),
we get

(3.10) ϕ′(t) = iE(X)(ϕ(t))
2·nC2·θ
m−nθ ,

2 · nC2 · θ
m− nθ

> 1.

The solution of this differential equation (3.10) with the above initial
conditions is

ϕ(t) = (1− iE(X)
λ

t)−λ, λ =
m− nθ

n2θ −m
> 0.

Consequently, F (x) is a gamma distribution.
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