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WEAK LAW OF LARGE NUMBERS FOR ADAPTED
DOUBLE ARRAYS OF RANDOM VARIABLES

NGUYEN VAN QQUANG AND NGUYEN NGgoc Huy

ABSTRACT. The aim of this paper is to extend the *“classical degenerate
convergence criterion” and the Feller weak law of large numbers to double
adapted arrays of random variables.

1. Introduction

The celebrated Feller weak law of large numbers (WLLN) say that if X, X5,

. is a sequence of mdependent and identically distributed (i.i.d.) random vari-
a,bles satisfying nP(|X1| > n) = o(1), then Y., (X;-EXI(]X:| < n))/n =0
in probability as n — oc.

The basis for proving weak laws is the “classical degenerate convergence
criterion”:

Theorem 1.1 ([10], p. 290). Let X1, Xs,... be independent random variables
with partial sums {S,,n > 1}, and let {b,,n > 1} a sequence of reals, b, T c©
as n — oo. Then, writing X,;; = X;I{|X;| < b.},1 <i < n, we have that

(1.1) b;lsnﬁo as n — ocC
if and only if

(1.2) ) ) P

Xl > bn) — 0
i=1
(1.3) i) 570 EXa 50
1=1
(1.4) iil) b;z Z VarX,; — 0.

=1

This theorem was extended in [9].
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Theorem 1.2 ([9], pp. 29-30). Let {S,, = > ., Xi,Fn,n > 1} be a martingale
and let {b,,n = 1} be a sequence of positive constants with b, T co as n — oo.
Then, writing Xn; = X;I{|X;| < bn},1 <t < n, we have that

(1.5) b;lSnf)O as n — o0
if
(1.6) i) Zn:P(|X3-| > byp) = 0
=1
(1.7) i) b i E(Xni|Fil1) 2 0
=1
(1.8) iii) by,> i{EXﬁi — E[E(Xyi| Fic1))’} = 0.
—

Note here that in the general case, when X; are not independent, then the
reverse is not true. (see [9] pp. 29-30).

The WLLN has been extended to the arrays of random variables or random
clements (for random variables, see Hong and Lee [5], Hong and Oh [6], Sung
[11] and Sung et al. [12], and for random elements, see Adler et al. [1], Ahmed
et al. [2], Hong et al. [7] and Sung et al. [13]).

The aim of this paper is to extend the “classical degenerate convergence
criterion” and the Feller weak law of large numbers to double adapted arrays
of random variables.

2. Preliminaries

In this section, notation, technical definitions and lemmas needed in connec-
tion with the main results will be presented. Some of the lemmas may be of
independent interest.

For a,b € R, max{a, b} will be denoted by aV b. Throughout this paper, the
symbol C will denote a generic constant (0 < C' < oo) which is not necessarily
the same one in each appearance.

Let N denote the set of all positive integers. As in [8], we note < the
lexicographic order on N x N, i.e., (i,7) < (k,1) if and only if either ¢« < k or
t=kand 3 <.

Let (2, 7, P) be a probability space. Then, a double array {Fpn,m 2> 1,n 2
1} of sub-o-algebras of F with indices in Nx N will be called a stochastic basis
if it is increasing, i.e., F;; C Fu for (i,7) < (k,1). If {Fmn,m > 1,n > 1}
is a stochastic basis and X,,, is an F,,,-measurable random variable for each
(m,n) € N XN, then {X,,n, Fn,m 2 1,n > 1} is called an adapted double
array.



WEAK LAW OF LARGE NUMBERS FOR ADAPTED DOUBLE ARRAYS 797

An adapted double array {Xmn, Fmn,m 2 1,n 2> 1} is called rowwise mar-
tingale difference if it is martingale difference in each row, i.e., for each m € N

E(X:m nt1]|Fmn) = 0 almost surely (a.s.),Vn € N,

Remark 1. It is easy to show that if {X,,,,Fmn} iS a rowwise martingale
difference, then for all (i, j) < (r, s), we have E(X | F;;) =0 as.

Random variables {X,,,,m > 1,n > 1} are said to be stochastically domi-
nated by a random variable X if for some constant C' < oo

P{|Xmnl >t} SCP{X|>t}, t20,m>1,n3>1.

An array of positive numbers (b,,,) will be called increasing to +oo if b;; <
b.s if and only if (i,5) < (r,s) and b,,, Toc as mVn — oo.

Lemma 2.1. Let { X0, Fmn,m 2 1,n 2 1} be an adapted double array. Then
{Yion = Xon — B(Xon| Fmn=1), Fmn} 15 a rowwise martingale difference.

Proof. Indeed, since E(X,, n11|Fmn) 15 an F,,n-measurable, we have

E(Ym,n—}—l]fmn) — E()(m,n-l-l - E(Aym,n-kllfmn”fmn)
— E():m,n—kllfmn) - E(me,n+1!an) = 0.

O

Lemma 2.2. Let {X,n, Fnn } be a rowwise martingale difference and EX? = <
oo for all (m,n) € Nx N. Then

E(}_; Z; Xij)? = Z; Z; EX} .
=1 j=— =1 3=

Proof. For all (¢,7), (k,l) € Nx N,(¢,7) # (k,!), we can assume that (i,7) <
(k,1). Then

Fi; C Fri
and
E(X;; X)) = E{E(X; X Fij)}
= E{X;;E(Xu|Fi;5)}
= E(X;; -0) =0.
From that point, we yield the conclusion. L]

Lemma 2.3. For all k € N,k = 1, the following inequalities hold.
(1) kP < 2505 re™! for pe (0,2).
2 . 2 2 _
(2) oo m? P kT = (ro = 1)2 7'} for allro € N,p € (1,2).

r=rgo
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2

Proof. 1) For p € (0,2) then - — 1 > 0 and function y = 27 s increasing on
P

(0, 00). Hence

1> / 2+ 'dg for all 7 = 1,2,...,k.

r—1

-

7‘!

So

2 2
2) For p € (1,2) then = — 2 < 0. Hence, function y = z+~? is decreasing on
(0, 00) and

r

o

re 2 g / 25 2dr for all r = ro,70 +1,...,k;79 € N.
r—1
Eventually,
i re~? g zk: j zo 2y = L (ko™ — (rg = 1)> 71}
r=rg h r=ro."” 4 2- p :

for all /g € N, p € (1, 2).
The proof is complete. O

3. Main results

With the notations and lemmas as above, the main results can now be
established.

Theorem 3.1. Let {X,n, Frun,m 2 1,n > 1} be an adapted double ar-

ray, (bmn) be an array of positive numbers increasing to +o0o. Put Yij =
XijI{|Xi;| € bmn}. Then we have

1 m it
(3.1) E——-ZZX@-E)O as mVn — oo,

MW =1 j=1
if
(3:2) 1) Y ) P{IXi|>bmn} =0 as mVn — oo,

1=1 =1
1 m T

(33) i) — > > B{YiylFis-1) 50 as mVn — oo,

i=1 7=1
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(3.4) iii) bz ZZ{E}

mn ;—1 j=1

799

i 1))}-—%0 as mVn — 0o.

Proof. For m > 1,n > 1, we put

3

m
E .{Yij,

i=1 j=1

Il

Y.

179

m n
TTITI

=1 j=1

n n
=) > E(Yy]Fi ).
i=1 j=I
On account of (i),

P(Smn/bmn _—,é §mn/bmn) = P(Smn # §mn)
< P U Yij # Xi;}

1<igm
1<jsn

T

<)) P{Yi; # Xy}

=1 j=1

=Y Y P{|Xi| > bmn}
=1 j=1
— 0 as mVn— oo.

P

: P ..
And so it suffices to prove that Smn — 0. But on account of (ii),

bmn

1 P
——lUmn — 0 8 mVn-— o0,

bmn

so that it suffices to prove that

1 -~
(Smnﬁ,umn)féo as mvn — 00.

bmn

For € > 0, from Chebyshev’s inequality together with Lemmas 2.1, 2.2, and
(iii), we have

o~

P{| mn( n = Bmn)] > €} = ZZ i — E(YVy|Fij-)) > €}
< E{-—-—ZZ(} — E(Yij|Fij-1)}
bz 62 ZZE{EJ o 'F‘l.? 1)}2

=1 j=1
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-7 >3 {83 - BB 1))

1=1 3=1

—0 as mVn — .
The proof is completed. L]

It is easy to show that if X, B X as mvn— oo, then Xy, B X as no
oo and we get

Corollary 3.2. Let {S, = >, Xi,Fn,n > 1} be an adapted sequence and let
{bn,n = 1} be a sequence of positive constants with b, T 00 as n — co. Then,
writing X,; = X;IH{| X;| < bn},1 <4 < n, we have that

(3.5) b-1S, 50 as n— o0
if
(3.6) i) i}mx4>my+0
=1
(3.7) i) b1 Y E(XplFio1) 50
(3.8) iii) b, an{EXJ‘;; — E[E(Xni| Fic1)P} = 0.

Thus, Theorem 1.2 is also true if the martingale condition of (S, =3, Xi,;
Fn) is replaced by the weaker condition: (S, = 3., X;, ; Fn) is an adapted
sequence. The below example shows that the above corollary is really stronger
then the theorem 1.2.

Let (Y;) be a sequence of independent and identically distributed random

variables such that .

P(Yi=-1)=P(¥;=1) = .
Then EY; =0 (Vi=1,2,...). Applying the Feller weak law of large numbers
to (Y;), we have

1 7L
EZ}QSO as n — 00.
i=1
(In fact £ 5°7 | ¥; ¥ 0 as n — o00.)

Put

1
Xi=Yi+ .
(/

Then EX; = + (Vi=1,2,...) and

—ZX ZY+ Z —>O+0 0 as n — oo.

zml =1
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Thus, (S, = )i, X;) satisfies the condition (1.1) and by Theorem 1.1, it also
satisfies the conditions (1.2), (1.3), (1.4} (with b, = n).

Now, let F,, be the o-field generated by (X;; 1 < ¢ < n). By the indepen-
dence of (X;) the conditions (1.2), (1.3), (1.4) can be replaced by the conditions
(3.6), (3.7), (3.8), respectively. Then (S, = >, , X;, ; F,) satisfies all as-
sumptions of Corollary 3.2. On the other hand, (S, =>_,_, X;, ; F,)isnota
martingale. This shows that the martingale condition of (S, =Y., X;, ; Fn)
in Theorem 1.2 is too strong.

Corollary 3.8. Let array of random variables {Xmn,m 2 1,n 2 1} be inde-
pendent, and let {b,,,,m = 1,n > 1} be an array of positive numbers increasing
to +00. PutY; = X;;I{|Xij| € bmn}. Then we have

1 Tt n
(3.9) : ZZXZ-J—E)U as mvVn — o0
mn . i=1
if
(3.10) ) > ) P{X;|>bun} =0 as mVn — 00,
i=1 j=1
1 m ri ’
(3.11) i) ; ZZE}U%O as mVn— oo,
mn .4 =1
1 m n
(3.12) i) > Y Varyi; -0 as mVn — .
mi i—1 J:l

Proof. For cach (m,n) € N x N, let F,,, be the o-algebra generated by all the
elements X;;, where (i,7) < (m,n) or (i,j) = (m,n). Then, array {Fpmn,m >
1,n > 1} is a stochastic basis and X, is an F,,,-measurable random variable
for each (m,n) € N x N.

From the hypothesis, we have that array {X,,,,m > 1,n > 1} is indepen-
dent. For this reason, these conditions (3.2), (3.3), and (3.4) in Theorem 3.1,
correspondingly, change to (3.10), (3.11) and (3.12) in Corollary 3.3. Hence,
the proof is clear. O

We shall now prove the following extension of the well-known Feller theorem
for adapted double arrays. This theorem also is extended by Gut in the case
of sequences (see [4] ).

Theorem 3.4. Let { X, Frun,m 2 1,n > 1} be an adapted double array.
Suppose that {Xmn,m = 1,n > 1} is stochastically dominated by a random

variable X. Let real number p € (0,2). Put Yi; = Xi;I{|Xi;| <menr}.
If

: L
rl_1+ngc rP{|X|>rr} =0,
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then the WLLN

Doic1 2= (Xij — B{Yy|Fij-1}) p
— =0 as mVn—+

mene

obtains.

11

Proof. We verify the conditions (3.2) and (3.4) in turn, where b,,, = mene.
We first verify the condition (3.2). By the assumption {X,,,,m > 1,n > 1}
is stochastically dominated by a random variable X, we have

DY P(Xy| >mint) <C YN P(X| > mind)
i:lj:l i:1j:1
= CmnP(|X| > mon¥)

Next, we verify the condition (3.4). We have

0<mTnT S S (BY2 - B(E(Yy|Fiy1))")

1=1 3=1 k=1
<mTn% Y YN RP{(k— 1M < Xyl <KV,
=1 7=1 k=1
m no omn k
<OmTne 3 S S (Do re ) P{k— 1)V < |Xy| < K7

"’1{ fP{(k - DVP < |Xy] < KVP}S

u\ﬂz
et 8
||\ﬂ
[y § b B
~
-3

j=1r k=r
= om7n% 3N Y P - 1)YP < | Xy < (mn)e)
=1 7=1 r=1
S Cm_Tzn_Tz JT;_IP{IXZJI > (T - 1)1/p}
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n T3S (N> (- 1))
=1 j=1 r=1
= Cm . n ’nmzri > (r — 1)l/p}
r=1
= C(’”m):”gH Z po {T'P([XI > (1 — l)l/p)}

It remains to prove the last term

Frerl

(mn) * 71 Y0 LR (] > (r - 1))

r—1

converges to 0 as mVn — oc.

Inthecase of 0 < p < 1. we th(‘ o

* < (’m/n)——) forall r =1,2,.

803

mn.

So, by the fact lim, rP(l N> (r—1) /P) = (0 and Stolz’s theorem, we ha,ve

mi

(mn) :ﬂ_z+ Z ""){rP ((H > (7‘—1)1/")}
r=1 )
S rP(([X] > (r—1)1/P)
< = — 0 as mVn — .
mn

Consider now the case 1 < p < 2
By the fact lim, rP( Ay
exists rg € N such that

rP(|.X] > (r

Then, we have

mrn

— 1)1/”) < € for all r > rq.

(mn "p~+1z YRt “rP(|X] > (r = 1))
In~1 \
= (mn)* {Z re” {?"P (X (7’*1)1/*”)}
—I—Zrz >(r——1)1/”)}}
<C 1.,__p + (nm)——ju Z rr 2
(mn) " » o
= (' ! — + ¢(mn) T Tl Z pe=?

(nm) S

> (1 — 1)1/") = 0 again, for any ¢ > 0, there
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Note that )
lim — = ()
mVn—oo (mn)2—p£
and by Lemma 2.3
e(mn) _92+l Z g e(mn):f’gﬂ(mn)%_l = ¢ for all mn > ry.
—p

r=7rp

Thus

(3.14) (mn)~ +1Zfr__2 {7P (] X]| >(fr—1)1/*°)}—>0 as mVn — 0.

Combining (3.13) and (3.14) we complete the proof. O]

Corollary 3.5. Let {X,,,F,,n > 1} be an adapted sequence. Suppose that
{Xn,n > 1} is stochastically dominated by a random variable X. Let real

number p € (0,2). Put Y; = X, I{|X;| < n?l’"}
If
le rP{|X]| > ?“71;} =0,
then the WLLN
2 iz (Xi — E{YilFi 1}) P

’n,P

~+0 as n — 00

obtains.

Corollary 3.6. Suppose that X, X, Xo,... are identically distributed, inde-
pendent random variables, the real number p € (0, 2).

If
(3.15) lim rP{|X] >'r9}:0,

r—00
then the WLLN

" X, —E{XI(|X|<nr
D i1 {XI(]X]| ")}50 v T o

(3.16) -
ne
obtains.

In the special case, when p = 1 we get the Feller’s weak law of large numbers.
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