• 제목/요약/키워드: sum of i.i.d. random variables

검색결과 20건 처리시간 0.019초

A tightness theorem for product partial sum processes indexed by sets

  • Hong, Dug-Hun;Kwon, Joong-Sung
    • 대한수학회지
    • /
    • 제32권1호
    • /
    • pp.141-149
    • /
    • 1995
  • Let N denote the set of positive integers. Fix $d_1, d_2 \in N with d = d_1 + d_2$. Let X and Y be real random variables and let ${X_i : i \in N^d_1} and {Y_j : j \in N^d_2}$ be independent families of independent identically distributed random variables with $L(X) = L(X_i) and L(Y) = L(Y_j)$, where $L(\cdot)$ denote the law of $\cdot$.

  • PDF

On the Almost Certain Rate of Convergence of Series of Independent Random Variables

  • Nam, Eun-Woo;Andrew Rosalsky
    • Journal of the Korean Statistical Society
    • /
    • 제24권1호
    • /
    • pp.91-109
    • /
    • 1995
  • The rate of convergence to a random variable S for an almost certainly convergent series $S_n = \sum^n_{j=1} X_j$ of independent random variables is studied in this paper. More specifically, when $S_n$ converges to S almost certainly, the tail series $T_n = \sum^{\infty}_{j=n} X_j$ is a well-defined sequence of random variable with $T_n \to 0$ a.c. Various sets of conditions are provided so that for a given numerical sequence $0 < b_n = o(1)$, the tail series strong law of large numbers $b^{-1}_n T_n \to 0$ a.c. holds. Moreover, these results are specialized to the case of the weighted i.i.d. random varialbes. Finally, example are provided and an open problem is posed.

  • PDF

CHARACTERIZATIONS OF THE GAMMA DISTRIBUTION BY INDEPENDENCE PROPERTY OF RANDOM VARIABLES

  • Jin, Hyun-Woo;Lee, Min-Young
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.157-163
    • /
    • 2014
  • Let {$X_i$, $1{\leq}i{\leq}n$} be a sequence of i.i.d. sequence of positive random variables with common absolutely continuous cumulative distribution function F(x) and probability density function f(x) and $E(X^2)$ < ${\infty}$. The random variables X + Y and $\frac{(X-Y)^2}{(X+Y)^2}$ are independent if and only if X and Y have gamma distributions. In addition, the random variables $S_n$ and $\frac{\sum_{i=1}^{m}(X_i)^2}{(S_n)^2}$ with $S_n=\sum_{i=1}^{n}X_i$ are independent for $1{\leq}m$ < n if and only if $X_i$ has gamma distribution for $i=1,{\cdots},n$.

ON COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES WITH APPLICATION TO MOVING AVERAGE PROCESSES

  • Sung, Soo-Hak
    • 대한수학회보
    • /
    • 제46권4호
    • /
    • pp.617-626
    • /
    • 2009
  • Let {$Y_i$,-$\infty$ < i < $\infty$} be a doubly infinite sequence of i.i.d. random variables with E|$Y_1$| < $\infty$, {$a_{ni}$,-$\infty$ < i < $\infty$ n $\geq$ 1} an array of real numbers. Under some conditions on {$a_{ni}$}, we obtain necessary and sufficient conditions for $\sum\;_{n=1}^{\infty}\frac{1}{n}P(|\sum\;_{i=-\infty}^{\infty}a_{ni}(Y_i-EY_i)|$>$n{\epsilon})$<{\infty}$. We examine whether the result of Spitzer [11] holds for the moving average process, and give a partial solution.

PRECISE RATES IN THE LAW OF THE LOGARITHM FOR THE MOMENT CONVERGENCE OF I.I.D. RANDOM VARIABLES

  • Pang, Tian-Xiao;Lin, Zheng-Yan;Jiang, Ye;Hwang, Kyo-Shin
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.993-1005
    • /
    • 2008
  • Let {$X,\;X_n;n{\geq}1$} be a sequence of i.i.d. random variables. Set $S_n=X_1+X_2+{\cdots}+X_n,\;M_n=\max_{k{\leq}n}|S_k|,\;n{\geq}1$. Then we obtain that for any -1$\lim\limits_{{\varepsilon}{\searrow}0}\;{\varepsilon}^{2b+2}\sum\limits_{n=1}^\infty\;{\frac {(log\;n)^b}{n^{3/2}}\;E\{M_n-{\varepsilon}{\sigma}\sqrt{n\;log\;n\}+=\frac{2\sigma}{(b+1)(2b+3)}\;E|N|^{2b+3}\sum\limits_{k=0}^\infty\;{\frac{(-1)^k}{(2k+1)^{2b+3}$ if and only if EX=0 and $EX^2={\sigma}^2<{\infty}$.

Extreme Value of Moving Average Processes with Negative Binomial Noise Distribution

  • Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • 제21권2호
    • /
    • pp.167-177
    • /
    • 1992
  • In this paper, we investigate the limiting distribution of $M_n = max (X_1, X-2, \cdots, X_n)$ in the infinite moving average process ${X_t = \sum c_i Z_{t-i}}$ generated from i.i.d. negative binomial variables $Z_i$'s. While no limit result is possible, nonetheless asymptotic bounds are derived. We also present the tail behavior of $X_t$, i.e., weighted sum of i.i.d. random variables. This continues a study made by Rootzen (1986) for discrete innovation sequences.

  • PDF

ON THE PRECISE ASYMPTOTICS IN COMPLETE MOMENT CONVERGENCE OF NA SEQUENCES

  • Han, Kwang-Hee
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.977-986
    • /
    • 2010
  • Let $X_1$, $X_2$, $\cdots$ be identically distributed negatively associated random variables with $EX_1\;=\;0$ and $E|X_1|^3$ < $\infty$. In this paper we prove $lim_{{\epsilon\downarrow}0}\;\frac{1}{-\log\;\epsilon}\sum\limits_{n=1}^\infty\frac{1}{n^2}ES_n^2I\{|S_n|\;{\geq}\;{\sigma\epsilon}n\}\;=\;2$ and $lim_{\epsilon\downarrow0}\;\epsilon^{2-p}\sum\limits_{n=1}^\infty\frac{1}{n^p}$ $E|S_n|^pI\{|S_n|\;{\geq}\;{\sigma\epsilon}n\}\;=\;\frac{2}{2-p}$ for 0 < p < 2, where $S_n\;=\;\sum\limits_{i=1}^{n}X_i$ and 0 < $\sigma^2\;=\;EX_1^2\;+\;\sum\limits_{i=2}^{\infty}Cov(X_1,\;X_i)$ < $\infty$. We consider some results of i.i.d. random variables obtained by Liu and Lin(2006) under negative association assumption.

Almost sure convergence for weighted sums of I.I.D. random variables (II)

  • Sung, Soo-Hak
    • 대한수학회보
    • /
    • 제33권3호
    • /
    • pp.419-425
    • /
    • 1996
  • Let ${X, X_n, n \geq 1}$ be a sequence of independent and identically distributed(i.i.d) random variables with EX = 0 and $E$\mid$X$\mid$^p < \infty$ for some $p \geq 1$. Let ${a_{ni}, 1 \leq i \leq n, n \geq 1}$ be a triangular arrary of constants. The almost sure(a.s) convergence of weighted sums $\sum_{i=1}^{n} a_{ni}X_i$ can be founded in Choi and Sung[1], Chow[2], Chow and Lai[3], Li et al. [4], Stout[6], Sung[8], Teicher[9], and Thrum[10].

  • PDF

THE LATTICE DISTRIBUTIONS INDUCED BY THE SUM OF I.I.D. UNIFORM (0, 1) RANDOM VARIABLES

  • PARK, C.J.;CHUNG, H.Y.
    • 대한수학회지
    • /
    • 제15권1호
    • /
    • pp.59-61
    • /
    • 1978
  • Let $X_1$, $X_2$, ${\cdots}$, $X_n$ be i.i.d. uniform (0,1) random variables. Let $f_n(x)$ denote the probability density function (p.d.f.) of $T_n={\sum}^n_{i=1}X_i$. Consider a set S(x ; ${\delta}$) of lattice points defined by S(x ; ${\delta}$) = $x{\mid}x={\delta}+j$, j=0, 1, ${\cdots}$, n-1, $0{\leq}{\delta}{\leq}1$} The lattice distribution induced by the p.d.f. of $T_n$ is defined as follow: (1) $f_n^{(\delta)}(x)=\{f_n(x)\;if\;x{\in}S(x;{\delta})\\0\;otherwise.$. In this paper we show that $f_n{^{(\delta)}}(x)$ is a probability function thus we obtain a family of lattice distributions {$f_n{^{(\delta)}}(x)$ : $0{\leq}{\delta}{\leq}1$}, that the mean and variance of the lattice distributions are independent of ${\delta}$.

  • PDF

ON THE RATES OF THE ALMOST SURE CONVERGENCE FOR SELF-NORMALIZED LAW OF THE ITERATED LOGARITHM

  • Pang, Tian-Xiao
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1137-1146
    • /
    • 2011
  • Let {$X_i$, $i{\geq}1$} be a sequence of i.i.d. nondegenerate random variables which is in the domain of attraction of the normal law with mean zero and possibly infinite variance. Denote $S_n={\sum}_{i=1}^n\;X_i$, $M_n=max_{1{\leq}i{\leq}n}\;{\mid}S_i{\mid}$ and $V_n^2={\sum}_{i=1}^n\;X_i^2$. Then for d > -1, we showed that under some regularity conditions, $$\lim_{{\varepsilon}{\searrow}0}{\varepsilon}^2^{d+1}\sum_{n=1}^{\infty}\frac{(loglogn)^d}{nlogn}I\{M_n/V_n{\geq}\sqrt{2loglogn}({\varepsilon}+{\alpha}_n)\}=\frac{2}{\sqrt{\pi}(1+d)}{\Gamma}(d+3/2)\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^{2d+2}}\;a.s.$$ holds in this paper, where If g denotes the indicator function.