Almost sure convergence for weighted sums of I.I.D. random variables (II)

  • Sung, Soo-Hak (Department of Applied Mathematics, Pai Chai University, Taejon 302-735)
  • Published : 1996.08.01

Abstract

Let ${X, X_n, n \geq 1}$ be a sequence of independent and identically distributed(i.i.d) random variables with EX = 0 and $E$\mid$X$\mid$^p < \infty$ for some $p \geq 1$. Let ${a_{ni}, 1 \leq i \leq n, n \geq 1}$ be a triangular arrary of constants. The almost sure(a.s) convergence of weighted sums $\sum_{i=1}^{n} a_{ni}X_i$ can be founded in Choi and Sung[1], Chow[2], Chow and Lai[3], Li et al. [4], Stout[6], Sung[8], Teicher[9], and Thrum[10].

Keywords