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ON THE RATES OF THE ALMOST SURE CONVERGENCE

FOR SELF-NORMALIZED LAW OF

THE ITERATED LOGARITHM

Tian-Xiao Pang

Abstract. Let {Xi, i ≥ 1} be a sequence of i.i.d. nondegenerate random
variables which is in the domain of attraction of the normal law with

mean zero and possibly infinite variance. Denote Sn =
∑n

i=1 Xi,Mn =

max1≤i≤n |Si| and V 2
n =

∑n
i=1 X

2
i . Then for d > −1, we showed that

under some regularity conditions,

lim
ε↘0

ε2(d+1)
∞∑

n=1

(log logn)d

n logn
I{Mn/Vn ≥

√
2 log logn(ε+ αn)}

=
2

√
π(1 + d)

Γ(d+ 3/2)

∞∑
k=0

(−1)k

(2k + 1)2d+2
a.s.

holds in this paper, where I{·} denotes the indicator function.

1. Introduction and main results

Let {Xi, i ≥ 1} be a sequence of i.i.d. random variables with common dis-
tribution function, and set Sn =

∑n
i=1 Xi and V 2

n =
∑n

i=1 X
2
i for n ≥ 1,

log x = ln(x ∨ e) and log log x = log(log x). Hsu and Robbins [9] and Erdös [6]
established the well-known complete convergence,

∞∑
n=1

P(|Sn| ≥ εn) < ∞, ε > 0

if and only if EX = 0 and EX2 < ∞. Baum and Katz [1] extended this result
and proved that for 1 ≤ p < 2 and r ≥ p,

∞∑
n=1

nr−2P(|Sn| ≥ εn1/p) < ∞, ε > 0(1.1)
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holds if and only if EX = 0 and E|X|rp < ∞.
Many authors considered various extensions of the results of Hsu-Robbins-

Erdös and Baum-Katz. Some of them studied the precise convergence rates of
the infinite sums as ε → 0 (c.f. Heyde [8], Chen [2] and Spǎtaru [13]). But,
this kind of results do not hold for p = 2. However, by replacing n1/p by√
n log log n, Gut and Spǎtaru [7] established the following results called the

precise asymptotics of the law of the iterated logarithm.

Theorem A. Suppose that EX = 0, EX2 = σ2 and EX2(log log |X|)1+δ < ∞
for some δ > 0, and let an = O(

√
n/(log log n)γ) for some γ > 1/2. Then

lim
ε↘1

√
ε2 − 1

∞∑
n=1

1

n
P(|Sn| ≥ εσ

√
2n log log n+ an) = 1.(1.2)

In the paper of Gut and Spǎtaru [7], the proof of Theorem A relies heavily on
the Berry-Esseen inequality. Of late, by using a different method, that is, the
strong approximation method (cf. Csörgő and Révész [3]), Zhang [14] provided
the sufficient and necessary conditions of precise asymptotics of the law of the
iterated logarithm not only for Sn, but also for Mn, here and in what follows,
we denote Mn = max1≤i≤n |Si|.

On the other hand, it is well-known that the so-called self-normalized limit
theorems put a totally new countenance upon classical limit theorems. The
main advantage of self-normalization is that the limit theorems in probability
and statistics, compared with the classical versions, may still hold under less or
even without any moment condition (cf. Shao [12]) if the normalizing constants
in the classical versions are replaced by an appropriate sequence of random
variables. For a survey on recent developments in this area, the reader is
referred to Lai and Shao [10] or de la Peña, Lai and Shao [5] for details.

Naturally, Pang, Zhang and Wang [11] studied the precise asymptotics in the
self-normalized law of the iterated logarithm and below are their main results.

Theorem B. Let {Xi, i ≥ 1} be a sequence of i.i.d. nondegenerate random
variables which is in the domain of attraction of the normal law with mean
zero. Suppose l(x) := EX2

1I{|X1| ≤ x} ≤ c1 exp(c2(log x)
β) for some c1 > 0,

c2 > 0 and 0 ≤ β < 1, αn = O(1/ log log n). Then, for d > −1, we have

lim
ε↘0

ε2(d+1)
∞∑

n=1

(log log n)d

n log n
P(Mn ≥

√
2V 2

n log log n(ε+ αn))

=
2√

π(1 + d)
Γ(d+ 3/2)

∞∑
k=0

(−1)k

(2k + 1)2d+2
(1.3)

and

lim
ε↘0

ε2(d+1)
∞∑

n=1

(log log n)d

n log n
P(|Sn| ≥

√
2V 2

n log log n(ε+ αn))
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=
1√

π(1 + d)
Γ(d+ 3/2),(1.4)

where Γ(·) is the gamma function.

Theorem C. Let {Xi, i ≥ 1} be a sequence of i.i.d. nondegenerate, symmetric
random variables which is in the domain of attraction of the normal law with
mean zero. Suppose l(x) ≤ c1 exp(c2(log x)

β) for some c1 > 0, c2 > 0 and
0 ≤ β < 1. Moreover, assume that for a > −1 and b > −1/2, αn(ε) is a
nonnegative function of ε such that

αn(ε) log log n → τ as n → ∞ and ε ↘
√
1 + a.(1.5)

Then
(1.6)

lim
ε↘

√
1+a

(ε2 − a− 1)b+1/2
∞∑

n=1

(log n)a(log log n)b

n
P(|Sn| ≥

√
2V 2

n log log n(ε+ αn(ε)))

=

√
1

π(1 + a)
exp(−2τ

√
1 + a)Γ(b+ 1/2),

where, τ is a finite constant.

The purpose of the present paper is devoted to study the almost sure con-
vergence versions of Theorem B and Theorem C. In what follows, we denote
I{·} the indicator function and C the positive constant whose value can differ
from line to line, and C1 and C2 stand for two universal constants respectively.
Now, we give our main results.

Theorem 1.1. Suppose the assumptions of Theorem B are satisfied, and in
addition, if there exists a δ0 > 1/2 such that

nP(|X1| > ηn) ≤ C1(log log n)
−(2d+2+δ0)

for some d > −1, where ηn is defined in (2.1) and (2.2) below. Then we have

lim
ε↘0

ε2(d+1)
∞∑

n=1

(log log n)d

n log n
I{Mn/Vn ≥

√
2 log log n(ε+ αn)}

=
2√

π(1 + d)
Γ(d+ 3/2)

∞∑
k=0

(−1)k

(2k + 1)2d+2
a.s.(1.7)

and

lim
ε↘0

ε2(d+1)
∞∑

n=1

(log log n)d

n logn
I{|Sn|/Vn ≥

√
2 log log n(ε+ αn)}

=
1√

π(1 + d)
Γ(d+ 3/2) a.s.(1.8)

Theorem 1.2 Under the assumptions of Theorem C with a > −1, b > −1/2
replaced by −1 < a < −1/2, b > −1/2 or a = −1/2,−1/2 < b < −1/4, and in
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addition, if there exists a δ
′

0 > 0 such that

nP(|X1| > ηn) ≤ C2(log n)
−(2a+2)(log log n)−(2b+1+δ

′
0)

for above a and b. Then we have
(1.9)

lim
ε↘

√
1+a

(ε2 − a− 1)b+1/2
∞∑

n=1

(log n)a(log log n)b

n
I{(|Sn|/Vn ≥

√
2 log log n(ε+ αn(ε))}

=

√
1

π(1 + a)
exp(−2τ

√
1 + a)Γ(b+ 1/2) a.s.,

where, τ is the same finite constant as that in Theorem C.

2. Proofs

One of the ideas of proofs is based on the truncated random variables. That
is, let

(2.1) l(x) = E(X2
1I{|X1| ≤ x}), b = inf{x ≥ 1 : l(x) > 0},

and

(2.2) ηj = inf{s : s ≥ b+ 1,
l(s)

s2
≤ (log log j)2

j
} for j = 1, 2, 3, . . . .

Then it is easy to see η2n(log log n)
2 ≈ nl(ηn). For each n and 1 ≤ i ≤ n, we

denote

(2.3) X̄ni = XiI{|Xi| ≤ ηn}, S̄n =
n∑

i=1

X̄ni, M̄n = max
1≤i≤n

|S̄i|, V̄ 2
n =

n∑
i=1

X̄2
ni.

Furthermore, the following lemma is taken from Csörgő, Szyszkowicz and Wang
[4] and will be used in the proofs.

Lemma 2.1. Let X be a random variable, and denote l(x) = EX2I{|X| ≤ x}.
The following statements are equivalent:

a) X is in the domain of attraction of the normal law,
b) x2P (|X| > x) = o(l(x)),
c) xE(|X|I{|X| > x}) = o(l(x)),
d) E(|X|nI{|X| ≤ x}) = o(xn−2l(x)) for n > 2.

Next, we give the following lemma which is also useful for the proofs of
theorems and is stated as follows.

Lemma 2.2. Let d > −1 and {Xi, i ≥ 1} be a sequence of i.i.d. nondegener-
ate random variables which is in the domain of attraction of the normal law
with mean zero. Suppose f(·) is a real function such that supx∈R |f(x)| ≤ C
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and supx∈R |f ′
(x)| ≤ C, and in addition, if there exists a δ0 > 0 such that

nP(|X1| > ηn) ≤ C(log log n)−(2d+2+δ0). Then for l ≥ m ≥ 1, we have
(2.4)

Var
(∑l

n=m
(log log n)d

n logn f( M̄n√
2nl(ηn) log logn(ε+αn)

)
)
≤ C (log logm)2d+1/2

(ε+αm) logm ,

Var
(∑l

n=m
(log log n)d

n logn f( S̄n√
2nl(ηn) log logn(ε+αn)

)
)
≤ C (log logm)2d+1/2

(ε+αm) logm ,

Var
(∑l

n=m
(log log n)d

n logn f(
V̄ 2
n

nl(ηn)
)
)
≤ C (log logm)2d

logm ,

Var
(∑l

n=m
(log log n)d

n logn

∑n
i=1 I{|Xi| ≥ ηn}

)
≤ C

(log logm)δ0
.

Proof. Denote M̄ij = maxi≤k<j |S̄k − S̄i|. Obviously, M̄ij is independent of
M̄i. Using EX = 0, η2n(log log n)

2 ≈ nl(ηn), Hölder inequality and Lemma 2.1,
for i < j we have

Cov
(
f(

M̄i√
2il(ηi) log log i(ε+ αi)

), f(
M̄j√

2jl(ηj) log log j(ε+ αj)
)
)

= Cov
(
f(

M̄i√
2il(ηi) log log i(ε+ αi)

),

f(
M̄j√

2jl(ηj) log log j(ε+ αj)
)− f(

M̄ij√
2jl(ηj) log log j(ε+ αj)

)
)

≤ CE
∣∣∣f( M̄j√

2jl(ηj) log log j(ε+ αj)
− f(

M̄ij√
2jl(ηj) log log j(ε+ αj)

)
∣∣∣

≤ C
EM̄i√

2jl(ηj) log log j(ε+ αj)

≤ C
Emax1≤k≤i |S̄k − ES̄k|+ iE|X1|I{|X1| > ηi}√

2jl(ηj) log log j(ε+ αj)

≤ C

√
il(ηi) + o(il(ηi)/ηi)√

2jl(ηj) log log j(ε+ αj)

≤ C

√
i√

j log log j(ε+ αj)
+ o

( √
i log log i√

j log log j(ε+ αj)

)
,(2.5)

which yields

Var
( l∑

n=m

(log log n)d

n logn
f(

M̄n√
2nl(ηn) log log n(ε+ αn)

)
)

≤ C
l∑

n=m

(log log n)2d

n2(log n)2
+ 2

l−1∑
i=m

l∑
j=i+1

(log log i)d

i log i

(log log j)d

j log j

·
( C

√
i√

j log log j(ε+ αj)
+ o

( √
i log log i√

j log log j(ε+ αj)

))
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≤ C
(log logm)2d

m(logm)2
+ C

(log logm)2d−1/2

(ε+ αm) logm
+ o

( (log logm)2d+1/2

(ε+ αm) logm

)
≤ C

(log logm)2d+1/2

(ε+ αm) logm
.(2.6)

The first part of (2.4) is proved. Similarly, the second and the third parts
of (2.4) can be proved by the same arguments, and we omit the details here.
Consider the fourth part of (2.4) now. In view of the assumption nP(|X1| >
ηn) ≤ C1(log log n)

−(2d+2+δ0) for some δ0 > 0, we have
(2.7)

Var
( l∑

n=m

(log log n)d

n log n

n∑
i=1

I{|Xi| ≥ ηn}
)

≤ C

l∑
n=m

(log log n)2d

n2(log n)2
· nP(|X1| ≥ ηn)

+ 2
l∑

j=m+1

j−1∑
i=m

(log log i)d

i log i

(log log j)d

j log j
Cov

( i∑
k=1

I{|Xk| ≥ ηi},
j∑

k=1

I{|Xk| ≥ ηj}
)

≤ C

l∑
n=m

(log log n)2d

n2(log n)2
· (log log n)−(2d+2+δ0)

+ 2
l∑

j=m+1

j−1∑
i=m

(log log i)d

i log i

(log log j)d

j log j
· iP(|X1| ≥ ηi)

≤ C
(log logm)−2−δ0

m(logm)2
+ C

l∑
j=m+1

j−1∑
i=m

(log log i)d

i log i

(log log j)d

j log j
· (log log i)−(2d+2+δ0)

≤ C

(log logm)δ0
.

□

Proofs of Theorem 1.1 and Theorem 1.2. We only show (1.7), since (1.8) and
(1.9) can be proved by the same way. We first give an upper and a lower
bound for the indicator function of self-normalized partial sums. For any given
0 < ε < 1, it is clear that

I{Mk

Vk
≥ x} ≤ I{ M̄k√

(1− ε)kl(ηk))
≥ x}

+I{
k∪

i=1

{|Xi| > ηk}}+ I{V̄ 2
k < (1− ε)kl(ηk)}(2.8)

and

I{Mk

Vk
≥ x} ≥ I{ M̄k√

(1 + ε)kl(ηk))
≥ x}
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−I{
k∪

i=1

{|Xi| > ηk}} − I{V̄ 2
k > (1 + ε)kl(ηk)}.(2.9)

Denote B(ε) = exp(exp(1/(ε2M))) for any M > 0. Fix M > 4 and 0 <
δ1 < 1/2, and let f(·) be a real function, such that I{|x| ≥

√
1− δ1} ≤ f(x) ≤

I{|x| ≥ 1−δ1}, supx |f
′
(x)| < ∞. Define εk = 1/k, k ≥ 4M+1. Then, it follows

from Lemma 2.2 and noting that αn = O(1/ log log n) = O(M/k2) = o(εk) for
n > B(εk),

Var
( ∑

n>B(εk)

(log log n)d

n log n
f(

M̄n√
2nl(ηn) log log n(εk + αn)

)
)

≤ C
(log logB(εk))

2d+1/2

εk logB(εk)

≤ CM−(2d+1/2)k4d+2e−4k,(2.10)

which together with Borel-Cantelli lemma yields∑
n>B(εk)

(log log n)d

n log n

(
f(

M̄n√
2nl(ηn) log log n(εk + αn)

)

−Ef(
M̄n√

2nl(ηn) log log n(εk + αn)
)
)
−→ 0 a.s.(2.11)

Similarly, one has∑
n>B(εk)

(log log n)d

n log n

(
f(

V̄ 2
n

nl(ηn)
)− Ef(

V̄ 2
n

nl(ηn)
)
)
−→ 0 a.s.(2.12)

By means of the similar arguments and using the assumption δ0 > 1/2, one
also has

(2.13)
∑

n>B(εk)

(log log n)d

n logn

( n∑
i=1

I{|Xi| ≥ ηn} − nP(|X1| ≥ ηn)
)
−→ 0 a.s.,

since

(2.14) Var
( ∑

n>B(εk)

(log log n)d

n log n

n∑
i=1

I{|Xi| ≥ ηn}
)
≤ CM δ0

k2δ0
.

Using the inequality (2.8), we have

lim
ε↘0

ε2(d+1)
∑

n>B(ε)

(log log n)d

n log n
I{Mn/Vn ≥

√
2 log log n(ε+ αn)}

(2.15)

≤ lim sup
k→∞

ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n logn
I{Mn/Vn ≥

√
2 log log n(εk + αn)}
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≤ lim sup
k→∞

ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n logn

(
I{M̄n/

√
(1− δ1)nl(ηn) ≥

√
2 log log n(εk + αn)}

+ I
{ n∪

i=1

{|Xi| ≥ ηn}
}
+ I{V̄ 2

n /(nl(ηn)) < (1− δ1)}
)

=: lim sup
k→∞

ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n logn
(I1 + I2 + I3).

We are going on to treat with the three terms above respectively. Together
(2.11) with Propositions 3.1 and 3.2 in Pang, Zhang and Wang [11] yields

lim sup
k→∞

ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n log n
I1

≤ lim sup
k→∞

ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n log n
f
( M̄n√

2nl(ηn) log log n(εk + αn)

)
≤ lim sup

k→∞
ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n log n
Ef

( M̄n√
2nl(ηn) log log n(εk + αn)

))
≤ lim sup

k→∞
ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n log n

·P
( M̄n√

nl(ηn)
≥ (1− δ1)

√
2 log log n(εk + αn)

)
≤ (1− δ1)

−2(d+1) 2√
π(1 + d)

Γ(d+ 3/2)
∞∑
k=0

(−1)k

(2k + 1)2d+2
a.s.(2.16)

For the second term of (2.15), in view of (2.13) we have

lim sup
k→∞

ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n log n
I2

≤ lim sup
k→∞

ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n log n

n∑
i=1

I{|Xi| ≥ ηn}

≤ lim sup
k→∞

ε
2(d+1)
k−1

∞∑
n=1

(log log n)d

log n
P(|X1| ≥

√
1− δ1ηn) = 0 a.s.,(2.17)

where in the equation above, we have used the similar arguments for showing
the right hand of (3.10) in Pang, Zhang and Wang [11]. Similarly, by using
the same arguments appeared above, (2.12) and the inequality (3.13) in Pang,
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Zhang and Wang [11], we have

lim sup
k→∞

ε
2(d+1)
k−1

∑
n>B(εk)

(log log n)d

n log n
I3 = 0 a.s.(2.18)

On the other hand,

lim sup
ε↘0

ε2(d+1)
∑

n≤B(ε)

(log log n)d

n log n
I{Mn/Vn ≥

√
2 log log n(ε+ αn)}

≤ lim sup
ε↘0

ε2(d+1)
∑

n≤B(ε)

(log log n)d

n log n

≤ C lim sup
ε↘0

ε2(d+1)

∫ B(ε)

ee

(log log x)d

x log x
dx

≤ C

1 + d
lim sup

ε↘0
ε2(d+1)(log logB(ε))d+1

=
C

1 + d
· 1

Md+1
.(2.19)

Now, it follows from (2.15)-(2.19) and by the arbitrarinesses of δ1 and M , we
have

lim sup
ε↘0

ε2(d+1)
∞∑

n=1

(log log n)d

n log n
I{Mn/Vn ≥

√
2 log log n(ε+ αn)}

≤ 2√
π(1 + d)

Γ(d+ 3/2)
∞∑
k=0

(−1)k

(2k + 1)2d+2
a.s.(2.20)

The similar arguments also yield

lim inf
ε↘0

ε2(d+1)
∞∑

n=1

(log log n)d

n log n
I{Mn/Vn ≥

√
2 log log n(ε+ αn)}

≥ 2√
π(1 + d)

Γ(d+ 3/2)
∞∑
k=0

(−1)k

(2k + 1)2d+2
a.s.,(2.21)

we omit the details here. The proofs are now completed. □
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