Browse > Article
http://dx.doi.org/10.4134/BKMS.2011.48.6.1137

ON THE RATES OF THE ALMOST SURE CONVERGENCE FOR SELF-NORMALIZED LAW OF THE ITERATED LOGARITHM  

Pang, Tian-Xiao (Department of Mathematics Yuquan Campus Zhejiang University)
Publication Information
Bulletin of the Korean Mathematical Society / v.48, no.6, 2011 , pp. 1137-1146 More about this Journal
Abstract
Let {$X_i$, $i{\geq}1$} be a sequence of i.i.d. nondegenerate random variables which is in the domain of attraction of the normal law with mean zero and possibly infinite variance. Denote $S_n={\sum}_{i=1}^n\;X_i$, $M_n=max_{1{\leq}i{\leq}n}\;{\mid}S_i{\mid}$ and $V_n^2={\sum}_{i=1}^n\;X_i^2$. Then for d > -1, we showed that under some regularity conditions, $$\lim_{{\varepsilon}{\searrow}0}{\varepsilon}^2^{d+1}\sum_{n=1}^{\infty}\frac{(loglogn)^d}{nlogn}I\{M_n/V_n{\geq}\sqrt{2loglogn}({\varepsilon}+{\alpha}_n)\}=\frac{2}{\sqrt{\pi}(1+d)}{\Gamma}(d+3/2)\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^{2d+2}}\;a.s.$$ holds in this paper, where If g denotes the indicator function.
Keywords
almost sure convergence; self-normalized; domain of attraction of the normal law; law of the iterated logarithm;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. Csorgo, B. Szyszkowicz, and Q. Y. Wang, Donsker's theorem for self-normalized partial sums processes, Ann. Probab. 31 (2003), no. 3, 1228-1240.   DOI   ScienceOn
2 V. H. de la Pena, T. L. Lai, and Q. M. Sha, Self-Normalized Processes: Limit Theory and Statistical Applications, Springer, New York, 2009.
3 P. Erdos, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286-291.   DOI
4 A. Gut and A. Spataru, Precise asymptotics in the law of the iterated logarithm, Ann. Probab. 28 (2000), no. 4, 1870-1883.   DOI   ScienceOn
5 C. C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab. 12 (1975), 173-175.   DOI   ScienceOn
6 P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. U.S.A. 33 (1947), 25-31.   DOI   ScienceOn
7 T. L. Lai and Q. M. Shao, Self-normalized limit theorems in probability and statistics. In: Asymptotic Theory in Probability and Statistics with Applications (Editors: T. L. Lai, L. F. Qian, and Q. M. Shao), International Press of Boston. pp. 3-43, 2007.
8 T. X. Pang, L. X. Zhang, and J. F. Wang, Precise asymptotics in the self-normalized law of the iterated logarithm, J. Math. Anal. Appl. 340 (2008), no. 2, 1249-1262.   DOI   ScienceOn
9 Q. M. Shao, Self-normalized large deviations, Ann. Probab. 25 (1997), no. 1, 285-328.   DOI   ScienceOn
10 A. Spataru, Precise asymptotics in Spitzer's law of large numbers, J. Theoret. Probab. 12 (1999), no. 3, 811-819.   DOI
11 L. X. Zhang, Precise rates in the law of the iterated logarithm, Available at http://arxiv1.library.cornell.edu/abs/math/0610519v1.
12 L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108-123.   DOI   ScienceOn
13 R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal. 8 (1978), no. 2, 328-333.   DOI
14 M. Csorgo and P. Revesz, Strong Approximations in Probability and Statistics, Academic, New York, 1981.