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ABSTRACT

The rate of convergence to a random variable S for an almost cer-
tainly convergent series S, = 2 7=1X; of independent random variables
is studied in this paper. More specifically, when S, converges to . al-
most certainly, the tail series T}, = 2 52n X; is a well-defined sequence
of random variables with T, — 0 a.c. Various sets of conditions are
provided so that for a given numerical sequence 0 < b, = o(1), the tail
series strong law of large numbers ;! T, — 0 a.c. holds. Moreover,
these results are specialized to the case of the weighted i.i.d. random
variables. Finally, examples are provided and an open problem is posed.
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1. INTRODUCTION

Let {X,, n> 1} be independent random variables defined on a probability
space (Q, F, P) and their partial sums will be denoted by S, = 37, X;, n 2
1. If S, converges almost certainly (a.c.) to a random variable S, then (set

S():O)

Tn=S—Sn_1=ZXj, TLZ].
Jj=n
is a well-defined sequence of random variables (referred to as the tail series)
with

T, -0 a.c.

To study the rate in which the partial sum S, converges to S is equivalent to
studying the rate in which the tail series T,, converges to 0.

Pioneering work on the limiting behavior of the tail series {T, n 2 1} was
conducted by Chow and Teicher (1973) wherein they obtained for the tail se-
ries of suitably bounded summands a counterpart to Kolmogorov’s (1929) cel-
ebrated law of the iterated logarithm (LIL) (see, e.g., Chow and Teicher (1988,
p.355)). Barbour (1974) established a tail series analogue of the Lindeberg-
Feller version of the central limit theorem (CLT). Numerous other investiga-
tions on the tail series LIL problem have been conducted; see Heyde (1977),
Wellner (1978), Kesten (1979), Budianu (1981), Chow, Teicher, Wei, and Yu
(1981), Klesov (1983), and Rosalsky (1983) for work in this direction. The
tail series LIL for Banach space valued random elements was investigated by
Dianliang (1988, 1991). Nam and Rosalsky (1995) provided various sets of
conditions so that for a given numerical sequence 0 < b, = o(1), the limit law

SUPgsy |Tk|/bn P, 0 holds.

Random variables {X,, n > 1} are said to obey the tail series strong law
of large numbers (SLLN) with the norming constants 0 < b, = o(1) if the tail
series T, is well defined and

b:'T, — 0 a.c.

Klesov (1983, 1984) studied the tail series SLLNs which are tail series analogues
of the SLLNs of Petrov (1975, p.272) for partial sums of independent random
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variables.

In this paper, we will establish tail series SLLNs for independent summands
which are tail series counterparts to the SLLNs for partial sums of Teicher
(1979). As special cases of these tail series SLLNs, we will investigate the
tail series SLLN problem for weighted independent and identically distributed
(ii.d.) random variables. Moreover, examples are provided which illustrate
the current work and an open problem is posed.

Finally, a remark about notation is in order. Throughout, it proves conve-
nient to define for z > 0

logz = log, x = logeVz, log, z = log, log,_, z, r > 2

where log z (when z > €) denotes the natural logarithm.

2. PRELIMINARY LEMMAS

Several lemmas are needed to establish the main result, Theorem 1. Lemma
1 is a tail series analogue of the Kronecker lemma. This lemma is initially due
to Heyde (1977), but Rosalsky (1983) reproved it in an alternative manner
because Heyde’s original proof was not quite clear to him. Independently from
Rosalsky’s paper, Klesov (1984) also proved the lemma in a manner similar to
that of Rosalsky.

Lemma 1. (Heyde (1977), Rosalsky (1983), Klesov (1984)). Let {z,, n >
1} be a sequence of constants and let {b,, n > 1} be a sequence of positive con-

stants with &, | 0. If the series 22, b7z, converges, then byly2, z; — 0.

n=1"%n j=n
In Lemma 2, there are no assumptions concerning the integrability of the
random variables exp{tS}, exp{tS,}, n > 1. Moreover, Lemma 2 cannot be
proved by invoking the continuity theorem for moment generating functions
unless S,, n > 1, and S are all defined on a common interval of the #-axis
containing 0 as an interior point.

Lemma 2. Let 5, = 27=1Xj, n > 1, where {X,, n > 1} are independent
random variables with E(X,) = 0 and %2, E(X?) < 0o. Then there exists a
random variable S with E(S) = 0, Var(S) = ¥, E(X2) and S, — S a.c.
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and such that
Jim E(exp{tSn}) = E(exp{tS}), —00 <t < o0.

Proof. The existence of a random variable S with E(S) = 0, Var(S) =
v E(X?)and S, — S a.c. follows directly from the Khintchine-Kolmogorov
convergence theorem (see, e.g., Chow and Teicher (1988, p.113)).

Next, let T,, = %2, X;, n > 1. For all n > 1, Jensen’s inequality ensures
that

E(CXP{tTnH}) > exp{tE(Th)} =¢” =1

and so
E(exp{tS}) = E(exp{tTu1} exp{tS.})
= B(exp{tT.1}) E(exp{tS.}) (by independence)
> E(exp{tS.}).
Thus, ~
lim sup E(exp{tS,}) < E(exp{tS}).
Moreover,

E(exp{tS}) = E(Jﬂlgoexp{tsn})
< liminf E(exp{tSn}) (by Fatou’s lemma)
which when combined with above inequality yields the conclusion. O
Lemma 3 is a tail series analogue of the exponential bounds lemma of Te-
icher (1979, Lemma 1). The proof of Lemma 3 employs the function 27! (1 4 27 ')

playing a similar role as the function g(z) = 7% (¢ — 1 — z) of Lemma 1 of

Teicher (1979).
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Lemma 3. Let {X,, n > 1} be independent random variables with
E(Xn) = 0, E(X?) = 02, and |X,| < M,, where {M,, n > 1} is a bounded
sequence of positive constants. Suppose that 7% 62 < oo, and set 2 =

o af, n>1.Let C, = SUp;>, M;/t,, n>1.

(?) The inequalities

2
(oo ) <l 1160} 2

hold for all ¢t € (0,C1).
(22) Let {z,, n > 1} be a sequence of positive real numbers satisfying

0<Chz, <u,n>1 (1)

for some constant u < co. Then the inequalities

2 v? uv
P{supT; > Az, t,p <exp -z, v)\———(l+—-—) ,n>1

hold for all A > 0 and all ve (0,u™Y].

Proof. (i) The argument is contained in the proof of Theorem 2 of Chow
and Teicher (1973).
(27) Fix n > 1 and for M > n set

M
Sijszia nS]SM

i=j3

J
SJ('M) = ZXMH—i, FIM = o(Xp, oy Xmpr—s), LSGS M 41—

J
i=1

Note at the outset that the independence and mean 0 hypotheses ensure that
{SJ(M), .7:](M), 1<)3<M+1- n} is a martingale in j for fixed M > n and
so for t > 0 and fixed M > n, {exp{t—’“- SJ(-M)}, .7-'1(-M), 1<j<M+1 —n}
is a submartingale in j (see, e.g., Chow and Teicher (1988, p.236)) since the
function ¢(s) = exp{é s} is convex. Next, observe that

{Sim, 5=m, oy M}y={S™M j=M+1-n, ., 1). (2)
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Then for N > n, ve€(0,u”

P{maxT>/\mn } =

n<j<N

IN

Letting N — oo yields

P{sup T; > Az,

jzn

Rate of Convergence of Series

1], and t = vz, we have

P{ lim max Sjy > Az, }

M—con<j<N

11m1nf P{ m;zx Sim > Azat }
(by Chow and Teicher (1988, p.260))
lig nf P{ max S™M) > Amntn} (by (2))

1<j<M+1-n 7

.. t (M) t
l}‘rln_glofP{ [ax, nexp{z:S'j }>exp{a/\xntn}}

M
. B(exp{ Sirion))
lim inf
M—oo exp{t A z,}

(by Doob’s submartingale maximal inequality, see, e.g.,

Doob (1953, p.314) or Billingsley (1986, p.487))

- B(exp{i Son})
l}kldn—.lo%f exp {tt Az}

E(exp{i Th})
exp {t Az, }
t? tC,
exp{—t)\:cn 3 ( 5 )}
(by part (7) noting that ¢ € 0,C.7 1)

1 1
exp{—v Az + —2—1)2 z2 (1 + FVTn Cn)}

exp{ (M - 3;(1 + %))} (by (1)).

(by Lemma 2)

tn} = lim P{ max T} > /\:cntn}
n<j<N

N—-ox

< exp{ (UA— 52(1 + %‘—’))}

thereby proving part (ii). O
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3. TAIL SERIES STRONG LAWS
OF LARGE NUMBERS

To establish almost certain convergence of the series S,, the Khintchine-
Kolmogorov convergence theorem and the Kolmogorov three-series criterion
(see, e.g., Chow and Teicher (1988, p.117)) are very useful devices. It will
be shown in the proof of Theorem 1 that the hypotheses guarantee that
{T,n > 1} is a well-defined sequence of random variables. As will be ap-
parent, Theorem 1 owes much to the work of Teicher (1979).

Theorem 1. Let 1 < p < 2 and let {X,,, n > 1} be independent random
variables with E(X,) =0, E(|X,[?) < e, where {e,, n > 1} are positive con-
stants with 3>, e, < co. Assume that

B}, = O(B;41) (3)
where B} = 372 €j, n > 1. If for some a € (~o0, 1)

> P{[Xn| > 6 B, (log, B,:”)l_"} < oo for some § > 0 (4)

n=1

and for alle > 0

o E(erlsal Br?)=%<|Xn|<6Bn(l B‘P1—°>
DR Lo G L AU
n=1

(B. (log, Bz?)1-=)"
then the tail series SLLN

T
B;, (log; Ba")1~*

— 0 a.c. (6)
holds.

Proof. Observe at the outset that the tail series {T},,n > 1} is well defined
by taking g(x) = |z|? in Assertion 4 of Klesov (1984). (Alternatively, with
the choice of g.(z) = |z[’, n > 1, Loéve’s (1977, p.252) generalization of
the Khintchine-Kolmogorov convergence theorem ensures that {T,,n > 1} is
a well-defined sequence of random variables.)
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Let ¢ > 0 be arbitrary and let 0 < a < %. For each n > 1, set U, =
Xn I[:X,,|553,,(}"og, B P)=a]’ Vo = X I[lx,.|>519n(log2 BrF)-a] and Wy, = X, — U, -
V.. Now, for each j > n > 1,

E(WJI) < E(lleI[sBJ-(log2B;P)i—a<|x,|53n(log2B;P)—a]>

+ E(lle I[|)(,|>Bn(log2 B.T")'“])

< B, (log, B;") ™" P{|X;| > §B;(log, B;?)'~*}
+ B'rll,_p (log2 B;P)a(p_l) E(IX] |P I[I.XJ|>Bn(log2 B;P)—a])
and so
IS E(Vj)l < B (logy B;")™ Y- P{IX;| > 8B,(log, B;")'~*}
J=n 1=n

+ B1=? (log, B 7)*~1) Z (| XflpI[|x,|>3,,(log23;")‘°])
= o(Bn (log, B; 7)™ ) (smce ap<l1),

using (4) and the fact that

ZE(|X i I[IXJI>Bn(1082 "’)“’]) < Br.

J=n

Note that (4) ensures via the Borel-Cantelli lemma that with probability
1, V, is eventually 0 and consequently so is 322, V;. Thus

].—n {V E(V)}
. B, (log, Bx*)-

In view of (5) and the Khintchine-Kolmogorov convergence theorem, Lemma
1 yields

— 0 a.c. (7)

Yien, AW; — E(W;)}
B, (log, B;7)1-«

Now, observe that E(X,) = E(U,) + E(V.) + E(W,) = 0. Then, in view
of (7) and (8), in order to show that (6) holds, it suffices to show (since ¢ is

— 0 a.c. (8)
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arbitrary) that R, = Lien (U; —E(Uj)}, n > 1, is a well-defined sequence of
random variables satisfying

. | Ry | 6e
1 <28
‘s’ B, (log, BiP)i—= = 72

a.c. (9)

for some 0 < 4 < 1 not depending on ¢.
To this end, firstly observe for each n > 1 that

E(lUn = E(Un)P) < 22{E(|UL" + [E(U.)P)}

< MMV E(|ULJP) (by Jensen’s inequality)

and so
2 E(Un —E(U)P) <271 e, < oo
n=1 n=1

Thus, by taking g(z) = |z|?, via Assertion 4 of Klesov (1984), {R., n > 1} is
a well-defined sequence of random variables.

Next, note that (3) ensures that Bn1/ B, > 7 for some 0 < v <1 and all
n 2> 1, and define n; = inf {n >1:B,< 7"}, k > 1. Then, for all k£ such
that n, > 2, B,, > ¥ By, 1 > Akt > Bh,,,- Hence {ny, k> 1} is a strictly
increasing sequence of integers. Moreover, for all k > 2 such that n; > 2, since
B,, > ~**! and B,,_, <4, it follows that

‘Bnk 2
e
Bnk—l

For each n > 1,

(10)

6¢e e
P{Rn > ?Bn (log, B7P)~%i.0. (n)}

< P{ max R, > %—;-Bnk (log2 B;kp)l-a . (k)}

ng_1<nng

n2ng_;

< P{ sup R, > g—ank (log; B?)' ™" iio. (k)}
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< P{ sup R, >6cB,,_, (log2 B;:’_l)l_a i.o. (L)}

n2ng—

(by (10) and the fact that B;? T as k T)

= P{ sup R, > 6¢ By, (log, B,;f)"“ i.0. (k)}. (11)

n>ng

Now, for each n > 1, let r2 = E(R2). Then

< E(Xf 11x;1<eB,(log, B; ”)“"]>
j=n

g2 PB,2P X

< Gog 7)o & B

j=n
2—p 2
-8 (12)
(logy Br?)>(=7)
For each n > 1, note that
|Up — E(U,)| < 2 B, (log, B.?)™" = M.
Then, setting
Ty r2 B,
it follows that
CrnyTn, = 2¢ (13)
1-o
AnsZnyTny = 6¢ By, (log; B3?) (14)
Any2?, = 6e (log, B;P) — oo (15)
z3, < €777 (logg B;?)*" = o(log, B,”) (16)

by (12) and the fact that ap < 1.
Now by (11) and (14) we obtain
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P{Rn > %Bn (log, B;P)'~ i.o.(n)} < P{sup R, > A, Tn,Th, 1.0 (k)} (17)

n2ng

But for all ¥ > 2 such that n; > 2, it follows from (13) and part (i) of Lemma
3 by taking v = 2¢ and v = (2¢)~! that

An 3
P{ns;?k R, > Ankwnkrnk} < exp{—xik (—2?" - 1662)}

exp{—3 (log2 B,:k”) + Kz,
(by (15) where K = 325 )

exp{—2 (log2 B,fk”)} ( for all large k£ by (16))
(~pklogy)™® ( since By? > 1)

INIA

and so

Z P{sup R, > )\nkxnkrnk} < 0o.
k=1 n2n
Hence, by the Borel-Cantelli lemma and (17),

6e

P{Rn > = B, (log, B;?)'~* i.o.(n)} =0

implying that
. R, 6e
1 < —
e’ B, (log, Bi?)1-= = 72

Now by replacing {X,, n > 1} by {—X,, n > 1}, it follows from (18) that (18)
likewise holds with R, replaced by —R,, thereby proving (9) and the theorem.
0

a.c. (18)

By taking p = 2 in Theorem 1, we obtain the following corollary which is
an analogue of a corollary of Teicher (1979).

Corollary 1. Let {X,, n > 1} be independent random variables with
E(X,) =0, 1E(X,f) =02, t2 =% o} =o(l), and tZ = O(2, ). If for some
—co<a<;
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3 P{an] > §t,(log, t;z)l""‘} < oo for some 6 > 0 (19)
n=l

and foralle >

271,
i E(Xn I[gt,.(log2 t;2)-&<],\’,.|<6t,.(210g2 t;,")l—a]) < oo, (20)
= (tn (logy £2)1-2)

then the tail series SLLN

T,

0 a.c.
t. (log, £22)ia ¢

holds.

Remark. Observe that this corollary precludes a = % In fact, the condi-
tions (19) and (20) when a = 1 comprise two of the three conditions for the

tail series LIL of Rosalsky (1983, Theorem 1).

The two conditions (4) and (5) of Theorem 1 will now be combined into a
single one in the ensuing Corollary 2 which is comparable with the tail series
LIL of Rosalsky (1983, Corollary 1). That is, a condition which ensures that
the conditions (4) and (5) are simultaneously satisfied will be presented in the
following corollary.

Corollary 2. Let 1 < p <2 and let {X,, n > 1} be independent random
variables with E(X,) =0, E(|X,]?) < e, where {e,, n > 1} are positive con-
stants with 377 ) e, < co. Assume that (3) holds where B = 3°72 e;, n > 1.
Let —oo<a<;—,and0§ﬂ§1. Ifforalle >0

o E(‘anzﬁ I[lx,.beB,.(log2 B;”)—a])
5 (Ba(log, Bi")—)"
then the tail series SLLN (6) holds.

< 00, (21)

Remark. Observe that for § = 0, the condition (21) reduces to
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> P{|X.| > ¢ B, (log, B;?)™*} <ocforalle >0

n=1
and for § = 1, it becomes
2
o E (Xn I[|x,.|>=B,,(log2 B;P)—a])
n=1 (Bn (log, B{p)l‘“)2

Proof of Corollary 2. Let § = 1. For an arbitrary ¢ > 0, the series of (21)
majorizes the two series obtained from (21) by restricting the range of integra-

< o0.
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tion to [|X,,| > By (log, B;7)'~*] and [¢ B,(log, B?)™ < |X,| < By(log, B 7)<,

and these series, in turn, majorize the series of (4) and (5), respectively. D

4. THE WEIGHTED 1.1.D. CASE

For ii.d. random variables {Y,, n > 1} with E(Y;) = 0 and E(Y?) =1
and nonzero contants {a,, n > 1}, consider the sequence of weighted i.i.d.
random variables {a, Y,, n > 1}. Then there exists a random variable S with
2im1a;Y; = Sac iff 22 62 < o0, (Sufficiency follows directly from the
Khintchine-Kolmogorov convergence theorem whereas necessity results from
the work of Kac and Steinhaus (1936) or Marcinkiewicz and Zygmund (1937)
or Abbott and Chow (1973).) In such a case, E(S) =0, E(5%) =¥, a2,

Corollaries 1 and 2 reduce to Corollaries 3 and 4 below, respectively, in the
weighted i.i.d. case.

Corollary 3. Let {Y,, n>1} be ii.d. random variables with E(1h) =0,
E(Y?) = 1, and let {a,, n > 1} be nonzero constants satisfying ¢ = ¥, a2 =
o(1) and t2 = O(t2,,). If for some —co < a < 3

> P{|Y1l > 6 lan|™" t, (log, t;z)l'“} < oo.for some § > 0

n=1

and for alle > 0

2 2
o E(Yl I[ela,,rltndog2 t:?)—a<m|<s|an|-’tn(log2t:2)1'°])

(1 oy 1)) s

0
n=1
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then the tail series SLLN

OO
2, a;Y;

tn (logztn’)l -

— 0 a.c. (22)

holds.
Corollary 4. Let {Y,, n>1} be i.i.d. random variables with E(Y;) = 0,
E(Y?) =1, and let {a,, n > 1} be nonzero constants satisfying t3 = 52, a =

o(1) and 2 = O(t2,,). Let —co <a < jand 0< F < 1. Ifforalle >0

23 .
) Ianl E<|Y1|26 I[|)",|>s|a,.|'1tn(10g2t:2)"°])

ne1 (tn (10g2 t;Z)l—a>2l3
then the tail series SLLN (22) holds.

< 00,

Theorem 2, which is an analogue of the tail series LIL of Rosalsky (1983,
Theorem 2), may now be stated.

Theorem 2. Let {Y,, n > 1} be i.i.d. random variables with E(Y;) = 0.

E(Y?) = 1, and let {a,,, n > 1} be nonzero constants satisfying t2=y%,d
o(1) and t2 = O(¢2,). If
2 N
= O((log2 t;2)’) for some —oo < 7 < 00, (23)
then the tail series SLLN
1= aJY} — 0 a.c.
t'n (10g2 tn )
holds for every —oo < a < % provided in the case 7 > 2(1 — a) that
E(Y? (log, [Y2])*07) < oo. (24)

Remark. Actually, under the assumption (23) when 7 < 1, the result
follows directly from the tail series LIL of Rosalsky (1983, Theorem 2). In the
case 1 < 1 < 2(1 — a), the additional assumption is not needed in Theorem
2, although an alternative additional assumption in the same spirit as (24) is
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required for the tail series LIL of Rosalsky when (23) holds with = > 1. And
for 7 > 2(1 — @), we assumed the moment condition (24) which is weaker
than the additional moment condition in the tail series LIL of Rosalsky since
T—-2(l—-a)<T1—-1.

Proof of Theorem 2. Without loss of generality, it may be assumed that
72> 0and a > 0. For each n > 1, let

_ e’n
- K(log, t72)7+20

qz

where € > 0 is fixed but arbitrary. Then the result follows from Corollary 4 by
suitably modifying the argument in the proof of Theorem 2 of Rosalsky (1983),
mutatis mutandis. The details are left to the reader. O

5. EXAMPLES

Two examples are provided which illustrate the current work. In the first
example, we will consider the almost certain rate of convergence of the har-
monic series with a random choice of signs.

Example 1. Let {X,, n > 1} be independent random variables such that
1
;o -1 _ LA -1 P
P{‘Xn—n }—P{‘\n——n }—2, n > 1.

The series of partial sums S, = 7=1 Xj can be interpreted as the harmonic
series with a random choice of signs. Consider the weighted i.i.d. random vari-
ables X,, = n7'Y,, n > 1, where {Y,, n > 1} is a sequence of i.i.d. random
variables with P{Y; = 1} = P{Y; = —1} = 1. Then the tail series SLLN

n? T,
(log, n) ¥+
1

follows from Theorem 2 with 7 = 0 and a = 7 — &

— 0 a.c (¢>0)

105
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The second example provides an application of the tail series SLLN to the
field of time series analysis.

Example 2. Let {S;, t =0, £1, +£2, ...} be the moving average process
of infinite order given by

Se=3a; X_; (25)
7=0

where {X,, t =0, £1, £2, ...} arei.i.d. normal random variables with mean
0 and variance 1 and {e;, j > 0} is a square summable sequence of constants.
As a specific example, consider a long memory process, which is represented

by (25) with ap =1 and
k—1+d

__LG+d _ k—1+d .
4=y rE - W T 2! (26)

0<k<y

where

/ = teidt, fxr>0
0

00, fz=0
N1 +2), ifz<O.

By applying Stirling’s formula to (26), we obtain (see, e.g., Brockwell and
Davis (1987, p.466)) for d # 0

|d] < % and ['(z) =

~d—1

I(d)

Then for every integer ¢ and £ > 0, the tail series SLLN

a; ~ as j — oo.

nf‘d

(log, n)
follows from Theorem 2 (with 7 = 0 and a =  —¢). We have thus deter-
mined for every integer ¢ an order bound on the almost certain rate in which

Y7o aj X j converges to S;. Observe that this order bound is independent of
the time t. Of course, 3-7_, a; X;_; is structurally far simpler than S;.

Z i Xi—j — 0a.c
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6. AN OPEN PROBLEM

In Section 3, we established the counterpart to the SLLN for partial sums
of Teicher (1979). But Theorem 1 is indeed an incomplete analogue of the
SLLN of Teicher (1979) because we assumed that the condition (5) holds for all
¢ > 0 rather than for some ¢ > 0 which was the case in a partial sum version of
condition (5) which was used by Teicher (1979) to prove a SLLN. The reason for
this is that our tail series exponential bound (part (i) of Lemma 3), which was
employed to prove Theorem 1, was proved only for all v € (0,u™!] rather than
for all v € (0, 00). Thus, by establishing an extension of this exponential bound
lemma without the restriction on v (which is the case in an exponential bound
for partial sums), the assumption (5) for all € > 0 might be able to be weakened
to (5) for some £ > 0. Conceivably, under no additional conditions or under
mild conditions, the convergence of the series in (5) for some € > 0 guarantees
convergence for all ¢ > 0 but this would require further investigation.
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