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PRECISE RATES IN THE LAW OF THE LOGARITHM FOR
THE MOMENT CONVERGENCE OF LI.D. RANDOM
VARIABLES

T1aN-X1A0 PANG, ZHENG-YAN LIN, YE J1ANG, AND KYO-SHIN HWANG

ABSTRACT. Let {X, Xn;n > 1} be a sequence of i.i.d. random variables.
Set Sp = X1 +Xo+ -+ Xpn, Mp = gcngxlsu, n > 1. Then we obtain
sn

that for any —1 < b < 1/2,

(¢
Eli\r‘% g2b+2 Z OEZ) E{M, —eo+/nlogn}y

20 % (—1)
= FrnaET N L G

if and only if EX = 0 and EX? = 02 < c0.

1. Introduction and main results

Let {X,Xn;n > 1} be a sequence of i.i.d. random variables with mean zero

and positive finite variance o2. Set S, ZX’“’ n = max |SL|, n > 1 and

let logn = log(n V €), loglogn = loglog(n V e ).
Gut and Spataru [5] obtained the following precise asymptotics on the law
of the logarithm.

Theorem A. Let {X, Xp;n > 1} be a sequence of i.i.d. random variables and
suppose that EX =0, EX? = 0? < 00. Then, for 0 <§ <1,
(26+2)

lim £20+2 i MP(LS'”I >ey/nlogn) = K o4z
eN0 oy n - 6+1

where p?°12 is the (26 + 2)th absolute moment of the standard normal distri-
bution.
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The purpose of this paper is to consider the precise asymptotics of moment
convergence of the law of logarithm, which is an analogue of Theorem A. We
state our result as follows.

Theorem 1.1. For any —1 < b < 1/2, the following are equivalent:

(1.1) EX=0 and EX’=0> (0<o0<0),
. logn
26+2
;1{‘1(1) E R E{M,, —eo+/nlogn}y
(1.2)

— 20 3+2b (-1)
T (b+1)(3+2b) £l ;} (2k + 1)3+2b
and
(1.3) hm 52b+22 (ogn)® E{|Sn|-e0oy/nlogn}; = ————E|N|?T2
n32 b+1)(3+2b) ’

where N is a standard normal variable.

Throughout this paper, we let C denote a generic constant, which can vary
from one place to another. a, ~ b, means that a,/b, = 1 as n — co.

2. Proofs

First, we give four lemmas which will be used in the proof of Theorem 1.1.
Lemma 2.1 is well known, see Billingsley [1], page 97.

Lemma 2.1. Let {W(t);t > 0} be a standard Wiener process, and N be a
standard normal variable. Then

P{sup |[W(s)| >z} = 1- > (-1)*P{(2k-1z <N < (2k+ 1)z}
0<s<1 ke —o0o
= 4) (-1)*P{N > (2k + 1)z}
(2.1) = 2) (-D*P{IN| > (2k + 1)z}.
k=0
Proof. It is well-known, see Billingsley [1], page 97. O

Lemma 2.2. Let {W(t);t > 0} be a standard Wiener.process. For any e > 0
there exists a constant C = C(g) > 0 such that

P( sup sup [W(s+t)—W(s)|>vvh)<
0<s<1—h0<t<h

g u2
h

for every v > 0 and h < 1.
Proof. Tt is Lemma 1.1.1 of Csorgé and Révész [2]. O
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Lemma 2.3. For any sequence of independent random variables {€,;n > 1}
with mean zero and finite variance, there exists a sequence of independent nor-
mal variables {n,;n > 1} with En, = 0 and En? = EE2 such that, for all g > 2
and y > 0,

k k n
(22 Pax| Y& - Y ml2y) < (A9t Y Bel,
=T e i=1 i=1
where A is a universal constant.

Proof. The proof can be found in Sakhaneko [6, 7). O

The purpose of this section is to employ strong approximation and truncation
methods of Feller [4] and Einmahl [3] to show that the moment of M, can

be approximated by that of v/n sup |W(s)| and the moment of S, can be
0<s<1

approximated by that of v/nN. In the sequel, without losing of generality, we
assume that ¢ = 1. Moreover, For each n and 1 < j < n, we denote

X, = X;I{X;] < Valogn}, X\ =X, —EX,,

ZX}}), MY = max 1SW, B, —ZVarX‘”

1<k<
j=1

Theorem 1.1 will be proved by the following propositions.

Proposition 2.1. For any b > —1,

logn 1
£26+2 2643
(2.3) 5\0 E E{|N| —ey/logn}y = GrD@+3) EIN|

and
E\O 2b+22 1ogn E{ up |W(s)| —ev/logn}y
~ D) (-1*
(2.4) = WEIN|2H3 kz:(] W

Proof. In light of (2.1) and the fact P(|N| > z) = 2P(N > ) we have for any
m > 1,

2m+1
23 (“D*P{IN|> @k + 1)z} < P{ sup [W(s)| 2z}
k=0 0<s<1
2m
< 2) (~LFP{IN| > (2k + 1)z}

k=0
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Hence, for any ¢t > 0 and m > 1,

I

E{ sup |[W(s)| —t}+ P (sup |W(s)| >t+z)dz
0<s<1 0<s<1

Zm: / P{IN| > 2k + 1)(t + z)}dz
k=

IA

o (DF
= P > 1
2k202k+1/0 (IN| > (2k + 1)t + 2}deo
2

pard 2k+1

E{|N| — (2k + 1)t} 5.

Similarly, we have

2m—+1 (—l)k
E 1% —t > 92
{0221! (s)] — thy > kg TSI

E{|N] - (2k + 1)t}

So we only need to prove (2.3). For any 8 > 1and b > —1,

N b
lim 242 37 (l‘)—gflmm — Bey/logn}s
n=1

N0
o] 1 b
= lim 52b+2/ (og—y)/ P(|N| > z)dzdy
N0 e y Beviegy
= li\r%ezb“/ 2(pe)” 2b+2)t2b+1/ P(|N| > z)dzdt
€ £ t
(2.5) =287 lim [ P(N|> ) / 2 dtda
eN\0 Be &
=257t [ PN 2 8) - (@™ — (86
,35
2,5_(2b+2)
=1 ?T2P(IN| >
Btz am ), P(N| 2 z)dz
,B_(2b+2)

- WE'N'”’”'

By letting 8 = 1, the proposition is proved.

Proposition 2.2. For any b < 1, we have

(2.6) i log” EIX|I{|X| > v/nlogn} < oo.

n=1
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Proof. It is easy to see that

> LR eyx|r(1x1 > yiogn)

(1
ogn ZEIX]I{\/_log]<|X|<\/ j+1)log(i + 1)}

I
MS i

n=1

oo

= Z EIX|I{/7logj < |X| < VG + 1) log]+1}z log"

C_Z EIX|I{y/jlogj < |X| < /(G + 1) log(j + 1)} - /5 (log5)®

CE(X?(log |X|)*™!) < CEX? < c0.

IA

IN

O

Proposition 2.3. There exists a > 0 small enough such that for any x > 0

VBLE{ sup [W(s)| -z~ (logn)? }4 — pn
0§s§1

() _
< E{r,glggfl]_ZX | —2v/Ba}t
(2.7) < /BnE{ sup |[W(s)| -z + (logn)? }; + pn.
0<s<1
and
VB nE(N| —a (logn)” }4 = pn
< E{IZX | —zv/Bn}+
(2.8) < VB nE{|N| — z+ (logn)” }4 + pn,
where p' = 1/2 — « and p, > 0 salisfying
(logn)®
(29) X; n3/2 pn < oo
with b < 1/2.

Proof. Obviously, n > B, ~ n. In view of Lemma 2.3, there exist a universal
constant A and a sequence of independent standard Wiener processes {W, ()}
such that for all fixed ¢ > 2, one has

k
k 1 /
(210)  pu := E{max| Y Xy — Wa(> Bn)| = 5v/Ba(logn)” }+
Sl
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= P(max X >z
/%wa—n(logn)? ’“<"IZ Bnll 2 2)de

< / (49720 S ExXY|1da
LV (log n)? kzzl

< On(5/Ballogn)? )~ E[X|7I{|X] < Vlogn)
< /2312 (1o n) 1=DE|X'I{|X| < Vilogn},

hence,
(2. 11)

(logn)°
Z n3/2 p’l’Ll
n=l
(logn)*+P' (1
< CZ%EIXI"I{IXI < Valogn}

p—l

logn b+p (1- q)

(
=CZTZE|X|"I{V j—1log(j — 1) < [X] < V/jlog j}
n=1
(logn) b+p(1 )

- CZE[X[‘II{«/(J —Dlog(j — 1) < |X| < \[mgg}zT

< CZ EIX|9I{/(j — D)log(j — 1) < |X| < V/Flogj} - 5~7/*(log j)b+P (1—0)
j=1

< CE (X?(log |X|)+#(:=0=(2=0)

< CEX%< o

by choosing a small enough and letting ¢ = 2 + « such that
b+p(1~-q)—(2—-q)=3a/2+a®+b-1/2<0.

On the other hand, write

ns 1 /
Pn2 = E{ sup IWn(SBn) - ”n([ ]Bn)l Y Bn(IOgn)p }+
0<s<1 ) 2

= /BrE{ sup |W,(s) — W,(—
0<s<1 n
1
1 /
= \/Bn/ P( sup |Wa.(s)— Wn(T)| >x+ §(logn)” Ydz
0

0<s<1

+\/B_n/1oo P( sup |Wy(s) —W,(—

0<s<1



(2.12)
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< VAP(sup (Wals) — Wa( )| 2 L togn))

Vi [ PCsup W) - wa () > o)

0<s<1

=: Dpy + Dpp.

By Lemma 2.2, we have

(2.13)

and

(2.14)

IN

I

IA

IA

o~ (logn)®
Z n3/z Dny

S ogn)PnP( sup [ (5) =W D) > - YHEER
anl(logn)bn—l nexp { — M}

C’Zlogn exp{——l—o—?—zn)—}<oo

n=1

f: (logn)®
n2
e n3/?
> logn [ns] 1
> TP(sup (Wals) - W2y > /2 vy da
0<s<1 n n

n=1

(logn)® /°° nx?
C nz::l = 1 nexp { 3 }dz
oo [eS] m?
C/ (log y)b/ exp{ — y—?)——}dxdy
C’/ (logy)°y 1/2/ exp{—t*}dtdy (by letting t = ,/Zx)
\/ /3 3
C’/ exp{— tz}/ ~1/2(logy)bdydt

C/ exp{—t?}t(logt)’dt < co.
Ve/3

Combining the last two inequalities leads to

(2.15)

b
Z (logn) Doy < 00.

n3/2
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Write
E{max|ZX | —zv/Bn}s

[M]

= E{ sup |ZX W, (sBn) + Wn(sBy)| — £v/Bn}4.

0<s<1
j=1

Since {M\/;TB—");t >0} 2 {W(t);¢ > 0} for each n, so for any real ¢ one has

VEE( sup 1700 ).

\/7E{ sup. IW s)l =t}

E{ sup |[W,(sB,)| —tv/Bn}+
0<s<1

Denote
[ns]
Pn = { sup IZX B,)| — v/Bn(logn)”
0<s<1
+
Then
VE.E Sugl W(s)| - 2 — (logm)” b+ — pn
1
< —
< E{r,glggljzX Il —aV/Ba}y
< /Bo.E{ sup |W(s)| — & + (logn)? }1 + pn,
0<s<1
and from (2.11) and (2.15), we have
=, (logn)® = (logn)®
Z n3/2) Dn S Z n3/2) (pnl +pn2) < 0.
n=1 n=1
(2.8) can be proved in the same way. The proposition is proved. 0

Now, we turn to prove the theorem.
Proof of Theorem 1.1. By EX = 0, we have

M, —5\/B logn
= max|ZXm+ZX - X.,)| —ey/Bnlogn

=1

= max[ZX,(ll)+ZXI{[X|>\/_logn} ZEXI{[X{>\/_logn}/

1=1

—e+/ B, logn.
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Denote
iE|leI{lXj| > v/nlogn} = nE|X|I{|X] > v/nlogn}.
=1
Then we have
E{max | ini)l —&v/Bnlogn}y — 2
-
E{M, — e\/Bylogn}+
E{max| Xk:Xﬁé’I —eV/B,logn}y + 2g,.
-t

IA

IA

In view of Proposition 2.3, we have for any p' = 1/2 — q,

/B E{ sup |[W(s)| —ey/logn — (logn)”’}+ — Dn — 2¢n
E{M, - 6\/Bn logn}4

V BnE{ iug [W(S)I - € IOgn + (logn)pl}+ +pPnt 2(171’
0<s<1

IN A

where p, > 0 satisfying

Moreover, by Proposition 2.2, we have

o] n b n
5 (ljﬁ/z) = Z (10\3/5_) EIX|I{|X| > vRlogn} < co.

n=1 n=1

On the other hand, let & = ¢ + 1/(logn)® ~ ¢ and notice that Bp/n — 1 as
n — 00, then by Propositions 2.3, 2.2 and 2.1, we have

(2.16) lim >+ Z lof/’; E{M, —ev/Balogn},

n=1

(1 ,
= gi\ir(l)Ez(b+1 Z oig) VB E{ sup. W (s)| — ev/logn % (logn)? }
+

n=1

eN\o0

1 /
— i 204 Z Qo VB { sup W(s) - < viogm
0<s<1

+

1
= ﬁme”“”ZME{ sup IW(s)I—sx/logn}
1 0<s<1

0
Ny 4
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— 2b+3
- (b+1)(2b+3 Nl Z 2k+1 (2k + 1)26+3°

Moreover, for n large enough and all £ > 0 and § > 0 we have
E{M, - €e(1+8)\/B,logn},
E{M, —e/nlogn},

E{M, —ey/B,logn};.

So, by the proof of Propositions 2.1 (taking 8 =1+ ¢ in (2.5)),

———g——ElNF"*?’ > __ D
(b+1)(26+ 3) —~ (2k + 1)26+3

lim inf ¢2(+1) Z (Li?)—n_lﬂE{Mn —ey/nlogn}t

IN A

(14 §)~2(+1)

<
eNO =1
2(b+1) 108" n—1/2
< limsupe Z E{M, —ey/nlogn},
eNO0

2 26+3 (=1)*

Letting § — 0, we obtain that (1.1) implies (1.2). Similarly, (1.1) implies (1.3).

Now, we only need to show (1.3) implies (1.1). First, we show that 0 <
EX2 < 0o. EX2 > 0 is obvious, otherwise, (1.3) can not hold. Let {X', X, ;n >
1} be an independent copy of {X, X,,;n > 1}, and

=3"X,, Xo=Xn-X,, S.=8.-5,

k=1

From (1.3), for all € > 0, we have

lim g20+2 Z (103/2 E{|S.| — 40ey/nlogn}s

eNO
< 211m52b+22 (logn)” E{|S,| — oe/nlogn}
eN0 n3/? " +
< oo

For any M > 0, n > 1, we denote

YV = XuI{|Xa) < M},

Y? = X I{|Xn| < M} - X I{|Xa| > M}.
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Then the sequence {Yn(z);n > 1} has the same distribution as {X,;n > 1},
and X, + Y¥ = 2¥{". It follows that

1imsup52b+22 10&;;/7; E{|ZZY | — 20ey/nlogn},

e~0 n=1
(2.17) < 2limsupe?®*? Z (logn)* E{|Sn| — 20ey/nlogn}; < C < oo.
AN n3/2

However, since {Y,g1 ;n > 1} is a sequence of i.i.d. bounded random variables

with EYl(l) = 0, by the proof of the first part of the theorem we have
(2.18)

/E (1)2
0<1§ne2b+2z (logn)° E{|ZY \/nlogn}+<C.

iz

By (2.17) and (2.18) we obtain

E(Yl(l))2 2642 (logn)®
- 2642
( 20 ) ah{‘% & Z n3/2

n () /E(Y1(1)>2
-E{]ZYk |—205T\/nlogn}+
= lim sup e20+2 Z IOEZ E{| Z | —20e1y/nlogn},

e1\0
1
< limsup e26*2 Z (Ofg) E{]2ZY,§1)| —20e1y/nlogn}y < C < o0,
e10 k=1

which leads to

VERC (I < M} ERD)
g g

Letting M — oo yields EX? < 0.
“EX =07 is obvious, otherwise, for any € > 0, by the law of large numbers

we have
P(|Sn] > 2¢0+/nlogn) — 1.

<C.

Therefore,

S B e (15, - cov/mTogn).,

n—=

1

= (10gn)b/ [$nl
o —2 ev/logn + z)dzx
; n ), Py zeViogn +a)
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v

logn + z)dz

<. (logn)® V8" | |S,]
UZ'——H /0 P(\/ﬁa >e

e b+1/2
Z M-)———P(ISHI > 2eav/nlogn) = oo,

n

n=1

n=1

which is a contradiction to (1.3).

Suppose EX = 0, EX? < oo and (1.3) holds for some constant ¢. By the

direct part of Theorem 1.1, (1.3) should hold with EX? taking the place of o2,

it is obviously a contradiction if EX% # o2. The proof is completed. O
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