J. Korean Math. Soc. Vol. 15, No. 1, 1978.

THE LATTICE DISTRIBUTIONS INDUCED BY THE SUM OF I. I. D. UNIFORM (0, 1) RANDOM VARIABLES

By C. J. PARK AND H. Y. CHUNG

1. Summary.

Let X_1, X_2, \dots, X_n be i. i. d. uniform (0, 1) random veriables. Let $f_n(x)$ denote the probability density function (p.d. f.) of $T_n = \sum_{i=1}^n X_i$. Consider a set $S(x; \delta)$ of lattice points defined by $S(x; \delta) = \{x | x = \delta + j, j = 0, 1, \dots, j = 0, \dots,$ n-1, $0 \le \delta \le 1$. The lattice distribution induced by the p.d.f. of T_n is defined as follow:

(1)
$$f_n^{(\delta)}(x) = \begin{cases} f_n(x) & \text{if } x \in S(x; \delta) \\ 0 & \text{otherwise.} \end{cases}$$

In this paper we show that $f_n^{(\delta)}(x)$ is a probability function thus we obtain a family of lattice distributions $\{f_n^{(\delta)}(x): 0 \le \delta \le 1\}$, that the mean and variance of the lattice distributions are independent of δ .

2. Main Results:

Let $f_n(x)$ be the p.d.f. of T_n , then $f_n(x)$ can be written, See Wilks Г19627.

(2)
$$f_n(x) = (1/(n-1)!) \sum_{i=0}^n (-1)^i \binom{n}{i} (x-i)_+^{n-1}$$

where

$$x_{+} = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

First we show that $f_n^{(\delta)}(x)$ defined by (1) is probability function.

THEOREM 1. Let $f_n^{(\delta)}(x)$ be a function defined in (1). Then

$$\sum_{x \in S(x;\delta)} f_n(\delta)(x) = 1.$$

Proof: Using (2), we can write

Received by the editors Apr. 30, 1978.

$$\sum_{x \in S(x; \delta)} f_n^{(\delta)}(x) = (1/(n-1)!) \sum_{j=0}^{n-1} \sum_{i=1}^{j} (-1)^i \binom{n}{i} (\delta+j-i)^{n-1}$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k} \delta^k \frac{1}{(n-1)!} \sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^i \binom{n}{i} (j-i)^{n-1-k}.$$

By rearranging the summation it can be shown that

(4)
$$\sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^{i} {n \choose i} (j-i)^{n-1-k} = \sum_{j=0}^{n-1} (-1)^{j} {n-1 \choose j} (n-1-j)^{n-1-k}.$$

But it is well known that the right hand side of (4) can be written as the differences of zeros, see Riordan (1958). Thus we get

$$\sum_{j=0}^{n-1} (-1)^{j} {n-1 \choose j} (n-1-j)^{n-1-k} = \begin{cases} 0 & \text{if } 0 < k \le n-1 \\ (n-1)! & \text{if } k=0 \end{cases}$$

Hence the conclusion of theorem 1 follows.

Note that the expression (3) is a polynomial in δ of degree (n-1) and the coefficients of δ^k , for $k \ge 1$, vanish.

To obtain the moments of probability function $f_n^{(\delta)}(x)$, we need the following lemma.

LEMMA: For any positive integer m and r, we have

(5)
$$\sum_{j=0}^{m} \sum_{i=0}^{j} (-1)^{i} {m+1 \choose i} (\delta+j-i)^{r}$$

$$= \sum_{q=0}^{r} {r \choose q} \delta^{q} \sum_{l=0}^{m} (-1)^{l} {m \choose l} (m-l)^{r-q}$$

$$= \sum_{q=0}^{r} {r \choose q} \delta^{q} \sum_{i=0}^{r-q} m! S(t, m),$$

where S(t, m) is Stirling number of the second kind defined by

$$n! S(r,n) = \sum_{j=0}^{n} (-1)^{j} {n \choose j} (n-j)^{r} \quad or$$

$$t^{n} = \sum_{r=0}^{n} t^{(r)} S(r,n), \quad where \quad t^{(r)} = t(t-1) \cdots (t-r+1).$$

Now we evaluate the k-th moment of the probability function $f_n^{(\delta)}(x)$,

$$\begin{split} \mu_{k}' &= (1/(n-1)!) \sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^{i} \binom{n}{i} (\delta+j-i)^{n-1} (\delta+j)^{k} \\ &= \frac{1}{(n-1)!} \sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^{i} \binom{n}{i} (\delta+j-i)^{n-1} \sum_{l=0}^{k} \binom{k}{l} (\delta+j-i)^{k-l} i^{l} \\ &= \frac{1}{(n-1)!} \sum_{l=0}^{k} \binom{k}{l} \sum_{l=0}^{l} S(l,r) \sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^{i} \binom{n}{i} (\delta+j-i)^{n+k-1-l} i^{(r)} \end{split}$$

$$= \frac{1}{(n-1)!} \sum_{l=0}^{k} {k \choose l} \sum_{r=0}^{l} S(l,r) (-1)^{r} n^{(r)} \times$$

$$\sum_{q=0}^{n+k-1-l} {n+k-1-l \choose q} \delta^{q} \sum_{j=0}^{n-r-1} (-1)^{j} {n-r-1 \choose j} (n-r-j)^{n+k-1-l-q}$$

$$= \frac{1}{(n-1)!} \sum_{q=0}^{n+k-1} \delta^{q} \sum_{l=0}^{\min[n-1,n+k-1-q,k]} {k \choose l} {n+k-1-l \choose q} \times$$

$$\sum_{r=0}^{l} S(l,r) (-1)^{r} n^{(r)} \sum_{j=0}^{n-r-1} (-1)^{j} {n-r-1 \choose j} (n-r-j)^{n+k-1-l-q}$$

$$= \frac{1}{(n-1)!} \sum_{q=0}^{n+k-1} \delta^{q} \sum_{l=0}^{\min[n-1,n+k-1-q,k]} {k \choose l} {n+k-1-l \choose q} \times$$

$$\sum_{r=0}^{l} S(l,r) (-1)^{r} n^{(r)} \sum_{l=0}^{n+k-1-l-q} (n-r-1)! S(t,n-r-1)$$

Using (6) in conjunction with the properties of Stirling number of the second kind, the following theorem can be established.

THEOREM 2: The mean and variance of the p.f. $f_n^{(\delta)}(x)$ is independent of δ if $n \ge k+1$ for k=1, 2. That is,

$$\mu = \mu_1' = n/2$$
, $\mu_2' = n(3n+1)/12$, and $\sigma^2 = \mu_2' - \mu^2 = n/12$.

We note that the mean and variance of $f_n^{(\delta)}(x)$, $\delta \neq 0$, is same as the mean and variance of $f_n^{(\circ)}(x)$, for $n \geq 3$

However we have not obtained μ_k' for $k \ge 3$ and can not conclude whether or not they are also independent of δ . It would be interesting to find the set of values of k such that the k-th moment of $f_n^{(\delta)}(x)$ is independent of δ .

Acknowledgement: We wish to thank Mr. Byung Sun Choi for his detailed checking on our original computations. The authors wish to thank referees for their valuable comments.

References.

- [1] Riordan, John (1958). An Introduction to Combinatorial Analysis. Wiley, New York.
- [2] Wilks, S.S. (1962). Mathematical Statistics, Wiley, New York.

Seoul National University