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ALMOST SURE CONVERGENCE FOR WEIGHTED
SUMS OF LI.D. RANDOM VARIABLES (II)

Soo HAK SunaG

1. Introduction

Let {X,X,.n > 1} be a sequence of independent and identically
distributed(i.i.d.) random variables with EX = 0 and E|X|? < oo for
some p > 1. Let {a,;,1 < ¢ < n,n > 1} be a triangular array of con-
stants. The almost sure(a.s.) convergence of weighted sums Z?:l ApiX
can be founded in Choi and Sung[1], Chow[2], Chow and Lai[3], Li et
al.[4], Stout[6], Sung(8], Teicher[9], and Thrum|[10]. As a special case
of general statements, Teicher[9, p.341] obtained the following:

Let {X, X,,n > 1} be a sequence of i.i.d. random variables with EX =
0. If maxi<i<n |ani| = O(l/(n,l/p logn)) and E|X|? < oo(l < p < 2),
then Y7 | an; X, converges to zero a.s.

Choi and Sung[l] and Sung[8j(p = 1 and 1 < p < 2, respectively)
proved Teicher’s result under the weaker condition max;<;<n |an;
O(1/(n'/?(logn)'~1/?)). The purpose of this paper is to weaken Te-
icher’s condition maxi<i<n |ani| = O(1/(n'/?log)) for the case p = 2.

In what follows we will use the following notation: log # = In max{z,
e}, where In is the natural logarithm, and C' denotes a positive constant
which is not necessarily the same one in each appearance.

Received December 8, 1995,

1991 AMS Subject Classification: 60F15.

Key words and phrases: almost sure convergence, weighted sums, triangular
arrays.

This paper was supported (in part) by NON DIRECTED RESEARCH FUND,
Korea Research Foundation, 1994.



Soo Hak Sung
2. Main result

The following two lemmas will be used in the proof of our main
result.

LEMMA 1. If EX? < oo then, for any € > 0,

——=FE|X|I(|X ) <
z:: nlogn XX > e logn) >

Proof. Noting that {n/logn} is an increasing sequence, we have

Z ———E|X|I(|X]> ¢
— vn Vvnlogn log

—;WZE’X’I W<"X|— logzj—jlj)
*ZE|X|I(6\/7<]X[_ logzj_jl)z\/m
<CZE|X!I \/:<1X|_ \/10gi(jj1)_>\/1o;¢
<CZP \/_<|X|* loglj«:l))lo;i

SC'EX2 < 00,

n

since the first inequality follows from the following fact:

dr < C\/;

Z\/F@<C/W

The following lemma plays an essential role in our main result.
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LEMMA 2. (Sung[7]). Let {X,,1 < i < n,n > 1} be an array of
rowwise independent random variables with EX,,;, =0 for1 <: < n
andn > 1. Set S, = Y., X, and s2 = 5.0 EX2,. Let {k,} be a
sequence of positive constants such that k, — 0 as n — oo. Suppose
that the following conditions hold:

(i) s2 <nforn>1.
(i) | Xni| € knv/n/logn as. for1 <i<nandn>1.
Then

lim sup ———— < 1 a.s.

n—oo V2nlogn

Now we state and prove our main result.

THEOREM 3. Let {X,X,,n > 1} be a sequence of i.i.d. random
variables with EX = 0 and EX? = 1. Let {ani;,1 <1< n,n>1} be a
triangular array of constants satisfying

1
1 ni| £ —==—.
(1) 1%1?5}%]“ | V2nlogn
Then
(2) limsupZam-X,- <1 as.

T~ OO .
t=1

Proof. By Lemma 1 there exists a sequence {e,} of real numbers
such that 0 < ¢, — 0 and

> 1 n
(3) E:j T B > en,/b—g;) < o0,

Define X! = X;I(1X;| < €4/ =), X! = X; — X/, and

log ¢

X i = aniv/2nlogn(X! — EX!). Then we have by (1) that

ZEX,ZH- < 2nEX2lognZafn <n

=1 =1
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max |X,;| <2 max ¢, Z,:o( L ).
1<i<n 1<i<n log logn

Hence, by Lemma 2, we have

and

n— oo

=

limsup Y an(X! - EX}) <1as.
1

To finish the proof, it is enough to show that
(4) Y an( X - EX]) = 0 as.
=1
By observing that
28+t

max | Y an(X[ - EX/' S XM+ EIX)
=1 1

1
< —_—
2k <n<2k s 25+ Jog 2K 12:‘

gk+1

(j N 1" i
> (X! + EIX]),

S Tt k41
V2K ]og 2k 41—

“we will obtain (4) if we show that

2k
1

5 — ) (| X+ E|X]]) =0 as.

(5) ST S B

as k — oo. From the Markov inequality and (3) we have that for any

e>0

2k

= 1 ;
P STUXY + EIXY]) > €)
2" g & B

I
MmN
i[~]e
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7t
[~]
[N>]
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since the last inequality follows from the following:

1 1
Z‘ \/2"10g2’c vio Z \/_ (1—1/v2)/Tlog:

{k:2%>1} {k 2k >4}

Thus (5) holds by the Borel-Cantelli lemma, and so the proof is com-
plete.

REMARK. In Theorem 3, if the condition (.) is replaced by the
weaker condition

1
(6) max |ap;| <

1<i<n Vv2nloglogn

the result (2) can not hold. In fact, Li et al.[5] proved that for almost
all choice of arrays satisfying (6)

n
lim sup E aniX; = o0 a.s.

n— oo .
1=1

The following corollary shows that the right-hand side of (2) in The-
orem 3 can be 0 if the condition (1) is replaced by the stronger condition

(7).

COROLLARY 4. Let {X,X,,n > 1} be a sequence of i.i.d. random
variables with EX = 0 and EX? < oo. Let {an;.1 <i <n,n > 1} be
a triangular array of constants satisfying

(7) max |ani| = o

1
1<i<n \/nlogn)'

Then

n

Z aniX; — 0 a.s.

1=1

Proof. Without loss of generality we assume EX? = 1. By the con-
dition (7) there exists a sequence {a,} of real numbers such that
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0 < ap — 0 and maxi<i<n lani| < an/v/2nlogn. Then we have by
Theorem 3 that

n
. j— aniXi
lim sup —Z-i———— <1a.s.
n—ooc o,

From this result it follows that

n
lim sup an:X; <0 as.
s 00, ; ni (3

By replacing X; by —X; from the above statement we obtain

n
liminf an; X; > 0 as.
N0 Z ni [

i=1
Thus the conclusion follows.

REMARK. The condition (7) in Corollary 4 is weaker than Teicher’s
condition maxi<i<n |ani| = O(1/y/nlogn).
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