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ON COMPLETE CONVERGENCE FOR WEIGHTED SUMS
OF I.I.D. RANDOM VARIABLES WITH APPLICATION TO

MOVING AVERAGE PROCESSES

Soo Hak Sung

Abstract. Let {Yi,−∞ < i < ∞} be a doubly infinite sequence of i.i.d.
random variables with E|Y1| < ∞, {ani,−∞ < i < ∞, n ≥ 1} an array of
real numbers. Under some conditions on {ani}, we obtain necessary and

sufficient conditions for
P∞

n=1
1
n

P (|P∞
i=−∞ ani(Yi − EYi)| > nε) < ∞.

We examine whether the result of Spitzer [11] holds for the moving average
process, and give a partial solution.

1. Introduction

Assume that {Yi,−∞ < i < ∞} is a doubly infinite sequence of identi-
cally distributed random variables. Let {ai,−∞ < i < ∞} be an absolutely
summable sequence of real numbers and

Xn =
∞∑

i=−∞
ai+nYi, n ≥ 1

be the moving average process based on the sequence {Yi}.
Under the independence assumption of the base sequence {Yi}, many lim-

iting results have been obtained. For example, Ibragimov [8] established the
central limit theorem, Burton and Dehling [3] obtained a large deviation, and
Li et al. [9] obtained the complete convergence. Under different dependence
assumptions of the base sequence {Yi}, Zhang [12], Baek et al. [1], and Li and
Zhang [10] obtained the complete convergence results.

Note that even if {Yi} is a sequence of independent and identically dis-
tributed (i.i.d.) random variables, the moving average process {Xn} are de-
pendent random variables.
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For a sequence {Xn, n ≥ 1} of i.i.d. random variables, Baum and Katz [2]
proved the following well known complete convergence theorem.

Theorem 1. Suppose that {Xn, n ≥ 1} is a sequence of i.i.d. random vari-
ables. Then EX1 = 0 and E|X1|rp < ∞(1 ≤ p < 2, r ≥ 1) if and only if∑∞

n=1 nr−2P (|∑n
i=1 Xi| > n1/pε) < ∞ for all ε > 0.

The case r = 2 and p = 1 of the above theorem was proved by Hsu and
Robbins [6] and Erdös [4]. Spitzer [11] proved the above theorem for the case
r = 1 and p = 1.

Li et al. [9] generalized Hsu-Robbins-Erdös result for the moving average
process based on a sequence of i.i.d. random variables {Yi,−∞ < i < ∞}.
Zhang [12] and Baek et al. [1] generalized the result of Baum and Katz [2] for
the moving average process based on a sequence of dependent random variables.
If we omit the insignificant condition (slowly varying function), the result of
Zhang [12] can be formulated as follows:

Theorem 2. Let {Yi,−∞ < i < ∞} be a sequence of identically distributed and
φ-mixing random variables with

∑∞
n=1 φ1/2(n) < ∞. Suppose that {Xn, n ≥ 1}

is the moving average process based on the sequence {Yi}. If EY1 = 0 and
E|Y1|rp < ∞ for some 1 ≤ p < 2 and r ≥ 1, then

∞∑
n=1

nr−2P (|
n∑

k=1

Xk| > n1/pε) < ∞ for all ε > 0.

Baek et al. [1] proved Theorem 2 for the negatively associated random
variables. However, the proofs of Zhang [12] and Baek et al. [1] are mistakenly
based on the fact that

(1)
n∑

i=1

ir−1−1/p = O(nr−1/p).

Note that (1) holds only for r − 1/p > 0. From the conditions 1 ≤ p < 2 and
r ≥ 1, the proofs of Zhang [12] and Baek et al. [1] are valid except for the case
r = 1 and p = 1. Thus it is natural to ask whether the result of Spitzer [11]
holds for the moving average process.

Question. Can we generalize the result of Spitzer [11] for the moving average
process? Namely, if {Xn, n ≥ 1} is the moving average process based on a
sequence of i.i.d. random variables {Yi,−∞ < i < ∞} with EY1 = 0, then∑∞

n=1
1
nP (|∑n

k=1 Xk| > nε) < ∞ for all ε > 0?

In this paper, we obtain new complete convergence results for weighted sums
of i.i.d. random variables. As corollaries, we derive a partial solution to the
question.

Throughout this paper, the symbol C denotes a positive constant which is
not necessarily the same one in each appearance.



COMPLETE CONVERGENCE FOR WEIGHTED SUMS 619

2. Preliminaries

The following two lemmas will be used to prove our main results. Lemma 1
is due to Etemadi [5].

Lemma 1. If X1, . . . , Xn are independent random variables, then for any t > 0

max
1≤l≤n

P (|
l∑

i=1

Xi| > t) ≥ 1
4

n∑

i=1

P (|Xi| > 8t)
{

1− P ( max
1≤l≤n

|
l∑

i=1

Xi| > 4t)
}

.

Hu et al. [7] proved the following lemma which is a version of the famous
Hoffmann-Jørgensen inequality for independent, but not necessarily symmetric,
random variables.

Lemma 2. If X1, . . . , Xn are independent random variables, then for every
integer j ≥ 1 and t > 0

P (|
n∑

i=1

Xi| > 6jt) ≤ CjP ( max
1≤i≤n

|Xi| > t

4j−1
)+Dj max

1≤l≤n

[
P (|

l∑

i=1

Xi| > t

4j
)
]2j

,

where Cj and Dj are positive constants depending only on j.

3. Complete convergence for weighted sums

Throughout this section, let {Yi,−∞ < i < ∞} be a sequence of i.i.d.
random variables with E|Y1| < ∞, {ani,−∞ < i < ∞, n ≥ 1} an array of real
numbers. Under some conditions on {ani}, we will find necessary and sufficient
conditions for (2).

(2)
∞∑

n=1

1
n

P (|
∞∑

i=−∞
ani(Yi − EYi)| > nε) < ∞ for all ε > 0.

Lemma 3. Let {Yi,−∞ < i < ∞} be a sequence of i.i.d. random variables
with E|Y1| < ∞. Let {ani,−∞ < i < ∞, n ≥ 1} be a bounded array of real
numbers satisfying

(3)
∞∑

i=−∞
|ani| = O(n).

Then for δ > 0 and γ = 1/ supi,n |ani|

P
( ∞∑

i=−∞
|aniYi|I(|Yi| > nγδ) > nδ/8

)

≥ 1
8

∞∑

i=−∞
P (|aniYi| > nδ) for all large n.
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Proof. We first note by (3) that

E
( ∞∑

i=−∞
|aniYi|I(|Yi| > nγδ)

) ≤ CnE|Y1| < ∞.

Thus
∑∞

i=−∞ |aniYi|I(|Yi| > nγδ) converges a.s.
Lemma 1 implies that

max
k≤l≤m

P (|
l∑

i=k

aniYiI(|Yi| > nγδ)| > nδ/8)(4)

≥ 1
4

m∑

i=k

P (|aniYi|I(|Yi| > nγδ) > nδ)
{

1− P ( max
k≤l≤m

|
l∑

i=k

aniYiI(|Yi| > nγδ)| > nδ/2)
}

.

By Markov’s inequality and (3), we get that

P ( max
k≤l≤m

|
l∑

i=k

aniYiI(|Yi| > nγδ)| > nδ/2)

≤ P (
m∑

i=k

|aniYi|I(|Yi| > nγδ) > nδ/2)

≤ 2
nδ

m∑

i=k

|ani|E|Y1|I(|Y1| > nγδ)

≤ CE|Y1|I(|Y1| > nγδ) → 0

as n →∞. Hence there exists a positive integer N such that

P ( max
k≤l≤m

|
l∑

i=k

aniYiI(|Yi| > nγδ)| > nδ/2) ≤ 1/2

if n > N. It follows by (4) that for n > N

P (
m∑

i=k

|aniYi|I(|Yi| > nγδ) > nδ/8)

≥ max
k≤l≤m

P (|
l∑

i=k

aniYiI(|Yi| > nγδ)| > nδ/8)

≥ 1
8

m∑

i=k

P (|aniYi|I(|Yi| > nγδ) > nδ).

Letting k → −∞ and m →∞, we have that for n > N

P (
∞∑

i=−∞
|aniYi|I(|Yi| > nγδ) > nδ/8) ≥ 1

8

∞∑

i=−∞
P (|aniYi|I(|Yi| > nγδ) > nδ)

=
1
8

∞∑

i=−∞
P (|aniYi| > nδ).
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Thus the result is proved. ¤

Lemma 4. Let {Yi,−∞ < i < ∞} be a sequence of i.i.d. random variables
with E|Y1| < ∞. Let {ani,−∞ < i < ∞, n ≥ 1} be a bounded array of real
numbers satisfying (3). Then, for δ > 0, the following statements hold:

(i) 1
n

∑∞
i=−∞ |ani|E|Yi|I(|Yi| > nδ) → 0 as n →∞.

(ii)
∑∞

n=1
1
nP (|∑∞

i=−∞ ani(YiI(|Yi| ≤ nδ)− EYiI(|Yi| ≤ nδ))| > nε) < ∞
for all ε > 0.

Proof. For (i), we have by (3) that

1
n

∞∑

i=−∞
|ani|E|Yi|I(|Yi| > nδ) ≤ CE|Y1|I(|Y1| > nδ) → 0

as n →∞. Hence (i) holds.
For (ii), we get by Markov’s inequality, |ani| = O(1), and (3) that

∞∑
n=1

1
n

P (|
∞∑

i=−∞
ani(YiI(|Yi| ≤ nδ)− EYiI(|Yi| ≤ nδ))| > nε)

≤ 1
ε2

∞∑
n=1

1
n3

E
∣∣

∞∑

i=−∞
ani(YiI(|Yi| ≤ nδ)− EYiI(|Yi| ≤ nδ))

∣∣2

≤ 1
ε2

∞∑
n=1

1
n3

∞∑

i=−∞
|ani|2E|Y1|2I(|Y1| ≤ nδ)

≤ C

∞∑
n=1

1
n2

E|Y1|2I(|Y1| ≤ nδ)

= C

∞∑

i=1

E|Y1|2I((i− 1)δ < |Y1| ≤ iδ)
∞∑

n=i

1
n2

≤ CE|Y1| < ∞.

Hence (ii) holds. ¤

The following theorem gives a necessary and sufficient condition for (2).

Theorem 3. Let {Yi,−∞ < i < ∞} be a sequence of i.i.d. random variables
with E|Y1| < ∞. Let {ani,−∞ < i < ∞, n ≥ 1} be a bounded array of real
numbers satisfying (3). Then (2) is equivalent to

∞∑
n=1

1
n

P (|
∞∑

i=−∞
aniYiI(|Yi| > n)| > nε) < ∞ for all ε > 0.

Proof. It suffices to show that

(5)
1
n

∞∑

i=−∞
aniEYiI(|Yi| > n) → 0
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and
(6)
∞∑

n=1

1
n

P (|
∞∑

i=−∞
ani(YiI(|Yi| ≤ n)− EYiI(|Yi| ≤ n))| > nε) < ∞ for all ε > 0.

By Lemma 4, (5) and (6) are satisfied. ¤

The following theorem gives a necessary condition for (2).

Theorem 4. Let {Yi,−∞ < i < ∞} be a sequence of i.i.d. non-negative
random variables with EY1 < ∞. Let {ani,−∞ < i < ∞, n ≥ 1} be a bounded
array of non-negative real numbers satisfying (3). If (2) holds, then

(7)
∞∑

n=1

1
n

∞∑

i=−∞
P (|aniYi| > nε) < ∞ for all ε > 0.

Proof. Let γ = 1/ supi,n ani. For −∞ < i < ∞ and n ≥ 1, define

Y ′
ni = YiI(|Yi| ≤ nγε), Y ′′

ni = Yi − Y ′
ni.

Observe that
∞∑

i=−∞
aniY

′′
ni =

∞∑

i=−∞
ani(Yi − EYi)−

∞∑

i=−∞
ani(Y ′

ni − EY ′
ni) +

∞∑

i=−∞
aniEY ′′

ni.

It follows by Lemma 3, Lemma 4, and (2) that
∞∑

n=1

1
n

∞∑

i=−∞
P (|aniYi| > nε)

≤ C

∞∑
n=1

1
n

P (
∞∑

i=−∞
aniY

′′
ni > nε/8)

≤ C

∞∑
n=1

1
n

P (|
∞∑

i=−∞
ani(Yi − EYi)| > nε/16)

+ C

∞∑
n=1

1
n

P (|
∞∑

i=−∞
ani(Y ′

ni − EY ′
ni) +

∞∑

i=−∞
aniEY ′′

ni| > nε/16)

≤ C

∞∑
n=1

1
n

P (|
∞∑

i=−∞
ani(Yi − EYi)| > nε/16)

+ C

∞∑
n=1

1
n

P (|
∞∑

i=−∞
ani(Y ′

ni − EY ′
ni)| > nε/32) < ∞.

Thus the result is proved. ¤

The following theorem gives a sufficient condition for (2).
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Theorem 5. Let {Yi,−∞ < i < ∞} be a sequence of i.i.d. random variables
with E|Y1| < ∞. Let {ani,−∞ < i < ∞, n ≥ 1} be a bounded array of real
numbers satisfying

(8)
∞∑

i=−∞
|ani| = O(

n

logα n
) for some α > 1.

Then (2) holds.

Proof. We observe by (8) that
∞∑

n=1

1
n

P (|
∞∑

i=−∞
aniYiI(|Yi| > n)| > nε)

≤ 1
ε

∞∑
n=1

1
n2

E
∣∣

∞∑

i=−∞
aniYiI(|Yi| > n)

∣∣

≤ 1
ε

∞∑
n=1

1
n2

∞∑

i=−∞
|ani|E|Y1|I(|Y1| > n)

≤ C

∞∑
n=1

1
n logα n

E|Y1|I(|Y1| > n) < ∞,

since α > 1. Thus the result follows from Theorem 3. ¤

The following theorem is a partial converse of Theorem 4.

Theorem 6. Let {Yi,−∞ < i < ∞} be a sequence of i.i.d. random variables
with E|Y1| < ∞. Let {ani,−∞ < i < ∞, n ≥ 1} be a bounded array of real
numbers satisfying

(9)
∞∑

i=−∞
|ani| = O(

n

logα n
) for some α > 0.

If (7) holds, then (2) holds.

Proof. Take a positive integer j such that α2j > 1. By Lemma 2, we have that

P (|
m∑

i=k

aniYiI(|Yi| > n)| > nε)

≤ P (
m∑

i=k

|aniYi|I(|Yi| > n) > nε)

≤ CjP ( max
k≤i≤m

|aniYi|I(|Yi| > n) > nε/(4j−16j))

+ Dj max
k≤l≤m

[
P (

l∑

i=k

|aniYi|I(|Yi| > n) > nε/(4j6j))
]2j
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≤ Cj

m∑

i=k

P (|aniYi|I(|Yi| > n) > nε/(4j−16j))

+ Dj

[
P (

m∑

i=k

|aniYi|I(|Yi| > n) > nε/(4j6j))
]2j

≤ Cj

m∑

i=k

P (|aniYi| > nε/(4j−16j)) + Dj

[
4j6j

nε

m∑

i=k

|ani|E|Y1|I(|Y1| > n)
]2j

.

Letting k → −∞ and m →∞, it follows that

P (|
∞∑

i=−∞
aniYiI(|Yi| > n)| > nε)

≤ Cj

∞∑

i=−∞
P (|aniYi| > nε/(4j−16j)) + Dj

[
4j6j

nε

∞∑

i=−∞
|ani|E|Y1|I(|Y1| > n)

]2j

.

Hence we have by (7) and (9) that

∞∑
n=1

1
n

P (|
∞∑

i=−∞
aniYiI(|Yi| > n)| > nε)

≤ Cj

∞∑
n=1

1
n

∞∑

i=−∞
P (|aniYi| > nε/(4j−16j))

+ Dj

∞∑
n=1

1
n

[
4j6j

nε
O(

n

logα n
)E|Y1|I(|Y1| > n)

]2j

< ∞,

since α2j > 1. Thus the result follows from Theorem 3. ¤

Remark 1. Condition (9) in Theorem 6 is stronger than condition (3) in The-
orem 4, and so Theorem 6 is a partial converse of Theorem 4.

4. Complete convergence of moving average processes

In this section, we give a partial solution to the question proposed in the
introduction.

Corollary 1. Let {Zi,−∞ < i < ∞} be a sequence of i.i.d. non-negative
random variables with EZ1 < ∞. Let {ai,−∞ < i < ∞} be a summable
sequence of non-negative real numbers. Set Yi = Zi − EZi. Suppose that
{Xn, n ≥ 1} is the moving average process based on the sequence {Yi}, i.e.,
Xn =

∑∞
i=−∞ ai+nYi. If

∑∞
n=1

1
n

∑∞
i=−∞ P (|∑n

k=1 ai+kZi| > nδ) = ∞ for
some δ > 0, then

∑∞
n=1

1
nP (|∑n

k=1 Xk| > nδ) = ∞ for some δ > 0.
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Proof. Set ani =
∑n

k=1 ai+k. Then
∑n

k=1 Xk =
∑∞

i=−∞ ani(Zi − EZi). Since∑∞
i=−∞ |ai| < ∞, it can be easily obtained that

|ani| = O(1) and
∞∑

i=−∞
|ani| = O(n).

Thus the result follows from Theorem 4. ¤
Remark 2. If we can find {ai} and {Zi} such that

∞∑
n=1

1
n

∞∑

i=−∞
P (|

n∑

k=1

ai+kZi| > nδ) = ∞

for some δ > 0, then the answer can be false. Unfortunately, we fail to find
such sequences, and so Corollary 1 gives a partial solution to the question.

Corollary 2. Let {ai,−∞ < i < ∞} be an absolutely summable sequence of
real numbers satisfying

∞∑

i=−∞
|

n∑

k=1

ai+k| = O(
n

logα n
) for some α > 0.

Suppose that {Xn, n ≥ 1} is the moving average process based on a sequence of
i.i.d. random variables {Yi,−∞ < i < ∞} with EY1 = 0. If

∞∑
n=1

1
n

∞∑

i=−∞
P (|

n∑

k=1

ai+kYi| > nε) < ∞

for all ε > 0, then
∑∞

n=1
1
nP (|∑n

k=1 Xk| > nε) < ∞ for all ε > 0.

Proof. The result follows from Theorem 6. ¤
Remark 3. If {ai,−∞ < i < ∞} is an absolutely summable sequence of real
numbers, it follows that

∑∞
i=−∞ |

∑n
k=1 ai+k| = O(n). The case α = 0 is of

importance for Corollary 2. If it is possible, then the answer can be true.
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