• Title/Summary/Keyword: quaternary logic

Search Result 16, Processing Time 0.022 seconds

Design of a High Performance $8{\times}8$ Multiplier Using Current-Mode Quaternary Logic Technique (전류 모드 4치 논리 기술을 이용한 고성능 $8{\times}8$ 승산기 설계)

  • Kim, Jong-Soo;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.267-270
    • /
    • 2003
  • This paper proposes high performance $8{\times}8$ multiplier using current-mode quaternary logic technique. The multiplier is functionally partitioned into the following major sections: partial product generator block(binary-quaternary logic conversion), current-mode quaternary logic full-adder block, quaternary-binary logic conversion block. The proposed multiplier has 4.5ns of propagation delay and 6.1mW of power consumption. Also, this multiplier can easily adapted to binary system by the encoder, the decoder. This circuit is simulated under 0.35um standard CMOS technology, 5uA unit current, and 3.3V supply voltage using Hspice.

  • PDF

Design of Synchronous Quaternary Counter using Quaternary Logic Gate Based on Neuron-MOS (뉴런 모스 기반의 4치 논리게이트를 이용한 동기식 4치 카운터 설계)

  • Choi Young-Hee;Yoon Byoung-Hee;Kim Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.43-50
    • /
    • 2005
  • In this paper, quaternary logic gates using Down literal circuit(DLC) has been designed, and then synchronous Quaternary un/down counter using those gates has been proposed The proposed counter consists of T-type quaternary flip flop and 1-of-2 threshold-t MUX, and T-type quaternary flip flop consists of D-type quaternary flip flop and quaternary logic gates(modulo-4 addition gates, Quaternary inverter, identity cell, 1-of-4 MUX). The simulation result of this counter show delay time of 10[ns] and power consumption of 8.48[mW]. Also, assigning the designed counter to MVL(Multiple-valued Logic) circuit, it has advantages of the reduced interconnection and chip area as well as easy expansion of digit.

Design of a High Performance Multiplier Using Current-Mode CMOS Quaternary Logic Circuits (전류모드 CMOS 4치 논리회로를 이용한 고성능 곱셈기 설계)

  • Kim, Jong-Soo;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.1-6
    • /
    • 2005
  • This paper proposes a high performance multiplier using CMOS multiple-valued logic circuits. The multiplier based on the Modified Baugh-Wooley algorithm is designed with current-mode CMOS quaternary logic circuits. The multiplier is functionally partitioned into the following major sections: partial product generator block(binary-quaternary logic conversion block), current-mode quaternary logic full-adder block, and quaternary-binary logic conversion block. The proposed multiplier has 4.5ns of propagation delay and 6.1mW of power consumption. This multiplier can easily adapted to the binary system by the encoder and the decoder. This circuit is designed with 0.35um standard CMOS process at 3.3V supply voltage and 5uA unit current. The validity and effectiveness are verified through the HSPICE simulation.

  • PDF

Low energy and area efficient quaternary multiplier with carbon nanotube field effect transistors

  • Rahmati, Saeed;Farshidi, Ebrahim;Ganji, Jabbar
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.717-727
    • /
    • 2021
  • In this study, new multiplier and adder method designs with multiplexers are proposed. The designs are based on quaternary logic and a carbon nanotube field-effect transistor (CNTFET). The design utilizes 4 × 4 multiplier blocks. Applying specific rotational functions and unary operators to the quaternary logic reduced the power delay produced (PDP) circuit by 54% and 17.5% in the CNTFETs used in the adder block and by 98.4% and 43.62% in the transistors in the multiplier block, respectively. The proposed 4 × 4 multiplier also reduced the occupied area by 66.05% and increased the speed circuit by 55.59%. The proposed designs are simulated using HSPICE software and 32 nm technology in the Stanford Compact SPICE model for CNTFETs. The simulated results display a significant improvement in the fabrication, average power consumption, speed, and PDP compared to the current bestperforming techniques in the literature. The proposed operators and circuits are evaluated under various operating conditions, and the results demonstrate the stability of the proposed circuits.

A Study on the Design of Binary to Quaternary Converter (2진-4치 변환기 설계에 관한 연구)

  • 한성일;이호경;이종학;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.152-162
    • /
    • 2003
  • In this paper, Binary to Quaternary Converter(BQC), Quaternary to Binary Converter(QBC) and Quaternary inverter circuit, which is the basic logic gate, have been proposed based on voltage mode. The BQC converts the two bit input binary signals to one digit quaternary output signal. The QBC converts the one digit quaternary input signal to two bit binary output signals. And two circuits consist of Down-literal circuit(DLC) and combinational logic block(CLC). In the implementation of quaternary inverter circuit, DLC is used for reference voltage generation and control signal, only switch part is implemented with conventional MOS transistors. The proposed circuits are simulated in 0.35 ${\mu}{\textrm}{m}$ N-well doubly-poly four-metal CMOS technology with a single +3V supply voltage. Simulation results of these circuit show 250MHz sampling rate, 0.6mW power consumption and maintain output voltage level in 0.1V.

Design of D/A Converter using the Multiple-valued Logic (다치논리를 적용한 D/A 변환기의 설계)

  • 이철원;한성일;최영희;성현경;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2621-2624
    • /
    • 2003
  • In this paper, we designed 12Bit DAC(Digital to Analog Converter) that applied to multiple-valued logic system to Binary system. The proposed D/A Converter structure consists of the Binary to Quaternary Converter(BQC) and Quaternary to Analog Converter(QAC). The BQC converts the two input binary signals to the one Digit Quaternary output signal. The QAC converts the Quaternary input signal to the Analog output signal. The proposed DAC structure can implement voltage mode DAC that high resolution low power consumption with reduced chip area. And also, it has advantage of the easy expansion of resolution and fast settling time.

  • PDF

Design of Quaternary Logic gate Using Double Pass-transistor Logic with neuron MOS Threshold gate (뉴런 MOS 임계 게이트를 갖는 2중 패스-트랜지스터 논리를 이용한 4치 논리 게이트 설계)

  • Park, Soo-Jin;Yoon, Byoung-Hee;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.33-38
    • /
    • 2004
  • A multi-valued logic(MVL) pass gate is an important element to configure multi-valued logic. In this paper, we designed the Quaternary MIN(QMIN)/negated MIN(QNMIN) gate, the Quaternary MAX(QMAX)/negated MAX(QNMAX) gate using double pass-transistor logic(DPL) with neuron $MOS({\nu}MOS)$ threshold gate. DPL is improved the gate speed without increasing the input capacitance. It has a symmetrical arrangement and double-transmission characteristics. The threshold gates composed by ${\nu}MOS$ down literal circuit(DLC). The proposed gates get the valued to realize various multi threshold voltages. In this paper, these circuits are used 3V power supply voltage and parameter of 0.35um N-Well 2-poly 4-metal CMOS technology, and also represented HSPICE simulation results.

  • PDF

Design of a Full-Adder Using Current-Mode Multiple-Valued Logic CMOS Circuits (전류 모드 다치 논리 CMOS 회로를 이용한 전가산기 설계)

  • Lee, Yong-Seop;Gwak, Cheol-Ho;Kim, Jeong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents a quaternary-binary decoder, a quaternary logic current buffer, and a quaternary logic full-adder using current-mode multiple-valued logic CMOS circuits. Proposed full-adder requires only 15 MOSFET, 60.5% and 48.3% decrease of devices are achieved compared with conventional binary CMOS full-adder and Current's full-adder. Therefore, decrease of area and internal nods are achieved. Designed circuits are simulated and verified by HSPICE. Proposed full-adder has 1.5 ns of propagation delay and 0.42㎽ of power consumption. Also, proposed full-adder can easily adapted to binary system by use of encoder, designed decoder and designed current buffer.

Syntheses and realization of Quaternary Galois Field Sum-Of-Product(QGFSOP) expressed 1-variable functions Permutational Literals (치환리터럴에 의한 Quaternary Galois Field Sum-Of-Product(QGFSOP)형 1-변수 함수의 합성과 실현)

  • Park, Dong-Young;Kim, Baek-Ki;Seong, Hyeun-Kyeong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.710-717
    • /
    • 2010
  • Even though there are 256 possible 1-qudit(1-variable quantum digit) functions in quaternary logic, the most useful functions are 4!=24 ones capable of representing in QGFSOP expressions by possible permuting of 0,1,2, and 3. In this paper, we propose a permutational literal(PL) representation and a QPL(Quaternary PL) gate which use the operands of a multiplicand A and an augend D in $Ax^C$+D(GF4) operation as a control variable of multi-cascaded PLs. And we also present new PL synthesis algorithms to synthesize QGFSOP expressed 24 (1-qudit) functions by applying three PL operators as ab(mutual permutation), + D(addition), and XA (multiplication). Finally architectures, circuits, and a CMOS implementation to realize proposed PL synthesis algorithms for $Ax^C$+D(GF4) functions are presented.

MVL Data Converters Using Neuron MOS Down Literal Circuit (뉴런모스 다운리터럴 회로를 이용한 다치논리용 데이터 변환기)

  • Han, Sung-Il;Na, Gi-Soo;Choi, Young-Hee;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.135-143
    • /
    • 2003
  • This paper describes the design techniques of the data converters for Multiple-Valued Logic(MVL). A 3.3V low power 4 digit CMOS analog to quaternary converter (AQC) and quaternary to analog converter (QAC) mainly designed with the neuron MOS down literal circuit block has been introduced. The neuron MOS down literal architecture allows the designed AQC and QAC to accept analog and 4 level voltage inputs, and enables the proposed circuits to have the multi-threshold properity. Low power consumption of the AQC and QAC are achieved by utilizing the proposed architecture.

  • PDF