• Title/Summary/Keyword: polysilicon gate

Search Result 91, Processing Time 0.026 seconds

Properties of Poly-Si TFT's using Oxide-Nitride-Oxide Films as Gate Insulators (Oxide-Nitride-Oxide막을 게이트 절연막으로 사용하여 제조한 다결정실리콘 박막트랜지스티의 특성)

  • 이인찬;마대영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1065-1070
    • /
    • 2003
  • HTO(High Temperature Oxide) films are mainly used as a gate insulator for polysilicon thin film transistors(Poly-Si TFT's). The HTO films, however, show the demerits of a high leakage current and a low electric breakdown voltage comparing with conventional thermal oxides even though they have a better surface in roughness than the thermal oxides. In this paper, we propose an ONO(Oxide-Nitride-Oxide) multilayer as the gate insulator for poly-Si TFT's. The leakage current and electric breakdown voltage of the ONO and HTO were measured. The drain current variation of poly-Si TFT's with a variety of gate insulators was observed. The thickness optimization in ONO films was carried out by studying I$\_$on/I$\_$off/ ratio of the poly-Si TFT's as a function of the thickness of ONO film adopted as gate insulator.

Effects of Electrical Stress on Polysilicon TFTs with Hydrogen passivation (다결정 실리콘 박막 트랜지스터의 수소화에 따른 전기적 스트레스의 영향)

  • Hwang, Seong-Soo;Hwang, Han-Wook;Kim, Dong-Jin;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1315-1317
    • /
    • 1998
  • We have investigated the effects of electrical stress on poly-Si TFTs with different hydrogen passivation conditions. The amounts of threshold voltage shift of hydrogen passivated poly-Si TFTs are much larger than those of as-fabricated devices both under the gate bias stressing and under the gate and drain bias stressing. Also, we have quantitatively analized the degradation phenomena using by analytical method. we have suggested that the electron trapping in the gate dielectric is the dominant degradation mechanism in only gate bias stressed poly-Si TFT while the creation of defects in the poly-Si is prevalent in gate and drain bias stressed device.

  • PDF

Effects of Electrical Stress on Polysilicon TFTs with Hydrogen Passivation (다결정 실리콘 박막 트랜지스터의 수소화에 따른 전기적 스트레스의 영향)

  • Hwang, Seong-Su;Hwang, Han-Uk;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.367-372
    • /
    • 1999
  • We have investigated the effects of electrical stress on poly-Si TFTs with different hydrogen passivation conditions. The amounts of threshod voltage shift of hydrogen passivated poly-Si TFTs are much larger than those of as-fabricated devices both under the gate only and the gate and drain bias stressing. Also, we have quantitatively analyzed the degradation phenomena by analytical method. We have suggested that the electron trapping in the gate dielectric is the dominant degradation mechanism in only gate bias stressed poly-Si TFT while the creation of defects in the channel region and $poly-Si/SiO_2$ interface is prevalent in gate and drain bias stressed device.

  • PDF

Characteristics of Mo Gate Electrode Deposited on ZrO2 Gate Insulator (ZrO2 게이트 절연막 위에 증착된 Mo 게이트 전극의 특성)

  • Kang, Young-Sub;An, Jea-Hong;Kim, Jae-Young;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.120-124
    • /
    • 2005
  • In this work, MOS capacitors were used to study the electrical properties of Mo gate electrode deposited on ZrO$_2$. The workfunctions of Mo gate extracted from C-V curves were appropriate for PMOS. Thermal stability of Mo metal was investigated by analyzing the variations of workfunction and EOT(effective oxide thickness) after 600, 700, and 800 $^{\circ}C$ RTA(rapid thermal annealing). It was found that Mo gate was stable up to 800 $^{\circ}C$ with underlying ZrO$_2$. The resistivities of Mo were 35$\mu$$.$cm∼ 75$\mu$$.$cm. These values are lower than those of heavily doped polysilicon. Based on these measurements, it can be concluded that Mo metal gate with ZrO$_2$ gate insulator is an excellent gate material for PMOS.

Characteristics of Ta-Ti Gate Electrode for NMOS Device (NMOS 소자의 Ta-Ti 게이트 전극 특성)

  • Kang, Young-Sub;Seo, Hyun-Sang;Noh, Young-Gin;Lee, Chung-Keun;Hong, Shin-Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • In this paper, characteristics of Ta-Ti alloy was studied as a gate electrode for NMOS devices to replace the widely used polysilicon. Ta-Ti alloy was deposited directly on $SiO_2$ by a co-sputtering method using two of Ta and Ti targets. The sputtering power of each metal target was 100W. To compare with Ta-Ti, Ta deposited with a 100W sputtering power was fabricated as well. In order to investigate the thermal/chemical stability of the Ta-Ti alloy gate, the alloy was annealed at $600^{\circ}C$ with rapid thermal annealer. No appreciable degradation of the device was observed. Also the results of electrical analysis showed that the work function of Ta-Ti metal alloy was about 4.1eV which was suitable for NMOS devices and sheet resistance of alloy was lower than that of polysilicon.

  • PDF

Analysis of PMOS Capacitor with Thermally Robust Molybdenium Gate (열적으로 강인한 Molybdenium 게이트-PMOS Capacitor의 분석)

  • Lee, Jeong-Min;Seo, Hyun-Sang;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.594-599
    • /
    • 2005
  • In this paper, we report the properties of Mo metal employed as PMOS gate electrode. Mo on $SiO_2$ was observed to be stable up to $900^{\circ}C$ by analyzing the Interface with XRD. C-V measurement was performed on the fabricated MOS capacitor with Mo Bate on $SiO_2$. The stability of EOT and work-function was verified by comparing the C-V curves measured before and after annealing at 600, 700, 800, and $900^{\circ}C$. C-V hysteresis curve was performed to identify the effect of fired charge. Gate-injection and substrate-injection of carrier were performed to study the characteristics of $Mo-SiO_2$ and $SiO_2-Si$ interface. Sheet resistance of Mo metal gate obtained from 4-point probe was less than $10\;\Omega\Box$ that was much lower than that of polysilicon.

Consideration of CCD Gate Structure in the Determination of the Point Spread Function of Yohkoh Soft X-Ray Telescope (SXT)

  • Shin, Jun-Ho;Sakurai, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.93.2-93.2
    • /
    • 2012
  • Point Spread Function (PSF) is one of the most important optical characteristics for describing the performance of a telescope. And a concept of subpixelization is inevitable in evaluating the undersampled PSF (Shin and Sakurai 2009). Then, the internal structure of Yohkoh SXT CCD pixel is not uniform: For the top half of pixel area, the X-ray should pass a so-called gate structure where the charges are transferred to an output amplifier. This gate structure shows energy-dependent sensitivity (Tsuneta et al. 1991). For example, for Al-K (8.34 A) X-ray emission, the transmission of the polysilicon gate is about 0.9. Also, for the peak coronal response of the SXT thin filters, around 17 angstrom (0.729 keV), the transmission of the gate is about 0.6, falling off sharply towards longer wavelengths. It should be noted that this spectrally dependent non-uniform response of each CCD pixel will certainly have a noticeable effect on the properties of the PSF at longer wavelengths. Therefore, especially for analyzing the undersampled PSF of low energy source, a careful consideration of non-uniform internal pixel structure is required in determining the shape of the PSF core. The details on the effect of gate structure will be introduced in our presentation.

  • PDF

Electrical and Chemical Stability of Mo Gate Electrode for PMOS (PMOS에 적합한 Mo 전극의 전기적 화학적 안정성)

  • 노영진;이충근;홍신남
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.23-28
    • /
    • 2004
  • In this paper, the properties of Mo as PMOS gate electrodes were studied. The work-function of Mo extracted from C-V characteristic curves was appropriate for PMOS. To identify the electrical and chemical stability of Mo metal gate, the changes of work-function and EOT(Effective Oxide Thickness) values were investigated after 600, 700, 800 and 90$0^{\circ}C$ RTA(Rapid Thermal Annealing). Also it was found that Mo metal gate was stable up to 90$0^{\circ}C$ with underlying SiO$_2$through X-ray diffraction measurement. Sheet resistances of Mo metal gate obtained from 4-point probe were less than 10$\Omega$/$\square$ that was much lower than those of polysilicon.

Study on the Fabrication of EPROM and Their Characteristics (EPROM의 제작 및 그 특성에 관한 연구)

  • 김종대;강진영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.67-78
    • /
    • 1984
  • EAROM device is an n-channel MOS transistor with a control gate stack ed on the floating gate. On account of channel injection type, channel lengths are designed 4-8 $\mu$m and chinnel widths 5-14 $\mu$m. These devices which have fourstructures of different type control gate are designed by NMOS 5 $\mu$m design rule and fabricated by double polysilicon gate NMOS Process. Double ion implantation is applied to increase punchthrough voltage and gate-controlled channel breakdown voltage. The drain and gate voltage for programming was 13-17V and 20-25V, respectively. EPROM cell fabricated could be erased not by optical method but by electrical method. The result of charge retention test showed decrease in stored charges by 4% after 200 hours at 1$25^{\circ}C$.

  • PDF

A Novel 1700V 4H-SiC Double Trench MOSFET Structure for Low Switching Loss (스위칭 손실을 줄인 1700 V 4H-SiC Double Trench MOSFET 구조)

  • Na, Jae-Yeop;Jung, Hang-San;Kim, Kwang-Su
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, 1700 V EPDT (Extended P+ shielding floating gate Double Trench) MOSFET structure, which has a smaller switching time and loss than CDT (Conventional Double Trench) MOSFET, is proposed. The proposed EPDT MOSFET structure extended the P+ shielding area of the source trench in the CDT MOSFET structure and divided the gate into N+ and floating P- polysilicon gate. By comparing the two structures through Sentaurus TCAD simulation, the on-resistance was almost unchanged, but Crss (Gate-Drain Capacitance) decreased by 32.54 % and 65.5 %, when 0 V and 7 V was applied to the gate respectively. Therefore, the switching time and loss were reduced by 45 %, 32.6 % respectively, which shows that switching performance was greatly improved.