• Title/Summary/Keyword: perturbed differential system

Search Result 62, Processing Time 0.033 seconds

UNIFORMLY LIPSCHITZ STABILITY OF PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • Choi, Sang Il;Lee, Ji Yeon;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.273-284
    • /
    • 2017
  • In this paper, we study that the solutions to perturbed differential system $$y^{\prime}=f(t,y)+{{\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$ have uniformly Lipschitz stability by imposing conditions on the perturbed part ${\int_{t0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using integral inequalities.

BOUNDEDNESS IN THE PERTURBED DIFFERENTIAL SYSTEMS

  • Goo, Yoon Hoe
    • The Pure and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.223-232
    • /
    • 2013
  • Alexseev's formula generalizes the variation of constants formula and permits the study of a nonlinear perturbation of a system with certain stability properties. In recent years M. Pinto introduced the notion of $h$-stability. S.K. Choi et al. investigated $h$-stability for the nonlinear differential systems using the notion of $t_{\infty}$-similarity. Applying these two notions, we study bounds for solutions of the perturbed differential systems.

ASYMPTOTIC PROPERTY OF PERTURBED NONLINEAR SYSTEMS

  • Im, Dong Man;Choi, Sang Il;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.103-116
    • /
    • 2017
  • In this paper, we show that the solutions to perturbed differential system $$y^{\prime}=f(t,y)+{{\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$ have asymptotic property by imposing conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y).

A NUMERICAL METHOD FOR SINGULARLY PERTURBED SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Tamilselvan, A.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1279-1292
    • /
    • 2009
  • In this paper, a numerical method that uses standard finite difference scheme defined on Shishkin mesh for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a discontinuous source term is presented. An error estimate is derived to show that the method is uniformly convergent with respect to the singular perturbation parameter. Numerical results are presented to illustrate the theoretical results.

  • PDF