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ASYMPTOTIC PROPERTY OF PERTURBED

NONLINEAR SYSTEMS

Dong Man Im*, Sang Il Choi**, and Yoon Hoe Goo***

Abstract. In this paper, we show that the solutions to perturbed
differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds+ h(t, y(t), T2y(t))

have asymptotic property by imposing conditions on the perturbed
part

∫ t

t0
g(s, y(s), T1y(s))ds, h(t, y(t), T2y(t)), and on the fundamen-

tal matrix of the unperturbed system y′ = f(t, y).

1. Introduction

Elaydi and Farran[8] introduced the notion of exponential asymp-
totic stability(EAS) which is a stronger notion than that of uniformly
Lipschitz stable. They investigated some analytic criteria for an au-
tonomous differential system and its perturbed systems to be EAS. Pach-
patte[18,19] studied the stability and asymptotic behavior of the solu-
tions of perturbed nonlinear systems under some suitable conditions on
the perturbation term. Gonzalez and Pinto[9] investigated the asymp-
totic behavior and boundedness of the solutions of nonlinear differential
systems. Choi et al.[5,6] examined Lipschitz and exponential asymp-
totic stability for nonlinear functional systems. Also, Goo [10,12,13]
and Goo et al.[14,15] investigated Lipschitz and asymptotic stability for
perturbed differential systems.

In this paper, we investigate asymptotic behavior for solutions of
perturbed nonlinear systems using integral inequalities. The method
incorporating integral inequalities takes an important place among the
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methods developed for the qualitative analysis of solutions to linear and
nonlinear system of differential equations.

2. Preliminaries

We consider the unperturbed nonlinear system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+×Rn and f(t, 0) = 0. Also, we consider the perturbed
functional differential system of (2.1)
(2.2)

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds+ h(t, y(t), T2y(t)), y(t0) = y0,

where g, h ∈ C(R+ × Rn × Rn,Rn) , g(t, 0, 0) = h(t, 0, 0) = 0, and
T1, T2 : C(R+,Rn) → C(R+,Rn) are continuous operators . The symbol
| · | will be used to denote any convenient vector norm in Rn. For an
n× n matrix A, define the norm |A| of A by |A| = sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) =
x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
We give some of the main definitions that we need in the sequel[8].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such
that |x(t)| ≤ M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0,



Asymptotic property of perturbed nonlinear systems 105

(EAS) exponentially asymptotically stable if there exist constants K > 0
, c > 0, and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < ∞.

Remark 2.2. [9] The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

We begin by recalling some preliminary results.
We need Alekseev formula to compare between the solutions of (2.1)

and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.5)

where g ∈ C(R+ ×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.3. [2] Let x and y be a solution of (2.1) and (2.5), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.4. (Bihari-type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
,

where t0 ≤ t < b1, W (u) =
∫ u
u0

ds
w(s) , W

−1(u) is the inverse of W (u),

and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.
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Lemma 2.5. [3] Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ
)
ds ∈ domW−1

}
.

Lemma 2.6. [16] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10 ∈ C(R+),
w ∈ C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose
that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)

∫ s

t0

(
λ3(τ)u(τ) + λ4(τ)w(u(τ))

+λ5(τ)

∫ τ

t0

λ6(r)u(r)dr + λ7(τ)

∫ τ

t0

λ8(r)w(u(r))dr
)
dτds

+

∫ t

t0

λ9(s)

∫ s

t0

λ10(τ)w(u(τ))dτds.
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Then, we have

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(
λ3(τ) + λ4(τ)

+ λ5(τ)

∫ τ

t0

λ6(r)dr + λ7(τ)

∫ τ

t0

λ8(r)dr
)
dτ

+ λ9(s)

∫ s

t0

λ10(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ)

+λ4(τ) + λ5(τ)

∫ τ

t0

λ6(r)dr

+λ7(τ)

∫ τ

t0

λ8(r)dr)dτ + λ9(s)

∫ s

t0

λ10(τ)dτ)ds ∈ domW−1
}
.

We need the following corollary for the proof.

Corollary 2.7. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that
for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)

∫ s

t0

(
λ3(τ)u(τ) + λ4(τ)w(u(τ))

+λ5(τ)

∫ τ

t0

λ6(r)u(r)dr + λ7(τ)

∫ τ

t0

λ8(r)w(u(r))dr
)
dτds.

Then, we have

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(
λ3(τ) + λ4(τ)

+λ5(τ)

∫ τ

t0

λ6(r)dr + λ7(τ)

∫ τ

t0

λ8(r)dr
)
dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

+λ5(τ)

∫ τ

t0

λ6(r)dr + λ7(τ)

∫ τ

t0

λ8(r)dr)dτ)ds ∈ domW−1
}
.
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Lemma 2.8. [11] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10 ∈ C(R+),
w ∈ C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose
that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds

+

∫ t

t0

λ2(s)

∫ s

t0

(
λ3(τ)u(τ) + λ4(τ)w(u(τ))

+λ5(τ)

∫ τ

t0

λ6(r)u(r)dr + λ7(τ)

∫ τ

t0

λ8(r)w(u(r))dr
)
dτds

+

∫ t

t0

λ9(s)

∫ s

t0

λ10(τ)w(u(τ))dτds.

Then, we have

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(
λ3(τ) + λ4(τ)

+λ5(τ)

∫ τ

t0

λ6(r)dr + λ7(τ)

∫ τ

t0

λ8(r)dr
)
dτ

+λ9(s)

∫ s

t0

λ10(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ)

+λ4(τ) + λ5(τ)

∫ τ

t0

λ6(r)dr

+λ7(τ)

∫ τ

t0

λ8(r)dr)dτ + λ9(s)

∫ s

t0

λ10(τ)dτ)ds ∈ domW−1
}
.

For the proof, we need the following corollary .

Corollary 2.9. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that
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for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds

+

∫ t

t0

λ2(s)

∫ s

t0

(
λ3(τ)u(τ) + λ4(τ)w(u(τ))

+λ5(τ)

∫ τ

t0

λ6(r)u(r)dr + λ7(τ)

∫ τ

t0

λ8(r)w(u(r))dr
)
dτds.

Then, we have

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(
λ3(τ) + λ4(τ)

+λ5(τ)

∫ τ

t0

λ6(r)dr + λ7(τ)

∫ τ

t0

λ8(r)dr
)
dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

+λ5(τ)

∫ τ

t0

λ6(r)dr + λ7(τ)

∫ τ

t0

λ8(r)dr)dτ)ds ∈ domW−1
}
.

3. Main results

In this section, we investigate asymptotic behavior for solutions of
the perturbed functional differential systems.

To obtain asymptotic behavior, the following assumptions are needed:
(H1) The solution x = 0 of (2.1) is EASV.

(H2) w(u) is nondecreasing in u such that u ≤ w(u) and 1
vw(u) ≤

w(uv ) for some v > 0.

Theorem 3.1. Suppose that (H1), (H2), and that the perturbing
term g(t, y, T1y) satisfies

(3.1) |g(t, y(t), T1y(t))| ≤ e−αt
(
a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|

)
,

(3.2) |T1y(t)| ≤ c(t)

∫ t

t0

k(s)|y(s)|ds+ d(t)

∫ t

t0

m(s)w(|y(s)|)ds,
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(3.3) |h(t, y(t), T2y(t))| ≤
∫ t

t0

e−αsp(s)|y(s)|ds+ |T2y(t)|,

and

(3.4) |T2y(t)| ≤ e−αtn(t)|y(t)|+
∫ t

t0

e−αsq(s)w(|y(s)|)ds,

where α > 0, a, b, c, d, k,m, n, p, q, w ∈ C(R+), a, b, c, d, k,m, n, p, q ∈
L1(R+). If
(3.5)

M(t0) =W−1
[
W (c) +M

∫ ∞

t0

(
n(s) + eαs

∫ s

t0

(a(τ) + b(τ)

+ p(τ) + q(τ) + c(τ)

∫ τ

t0

k(r)dr + d(τ)

∫ τ

t0

m(r)dr)dτ
)
ds
]
< ∞,

where t ≥ t0, c = |y0|Meαt0 , and W , W−1 are the same functions as in
Lemma 2.4, then all solutions of (2.2) approach zero as t → ∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the assumption (H1), it is EAS by
remark 2.2. Using Lemma 2.3, together with (3.1), (3.2), (3.3), and
(3.4), we obtain

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(∫ s

t0

e−ατ ((a(τ) + p(τ))|y(τ)|

+(b(τ) + q(τ))w(|y(τ)|) + c(τ)

∫ τ

t0

k(r)|y(r)|dr

+d(τ)

∫ τ

t0

m(r)w(|y(r)|)dr)dτ + e−αsn(s)|y(s)|
)
ds.

Applying the assumption (H2), we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
(
eαs

∫ s

t0

((a(τ) + p(τ))|y(τ)|eατ

+(b(τ) + q(τ))w(|y(τ)|eατ ) + c(τ)

∫ τ

t0

k(r)|y(r)|eαrdr

+d(τ)

∫ τ

t0

m(r)w(|y(r)|eαr)dr)dτ + n(s)|y(s)|eαs
)
ds.
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Set u(t) = |y(t)|eαt. An application of Corollary 2.7 and (3.5) obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(
n(s) + eαs

∫ s

t0

(a(τ) + b(τ) + p(τ)

+q(τ) + c(τ)

∫ τ

t0

k(r)dr + d(τ)

∫ τ

t0

m(r)dr)dτ)
)
ds
]
≤ e−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 . Hence, all solutions of (2.2) approach
zero as t → ∞.

Remark 3.2. Letting n(t) = p(t) = q(t) = 0 in Theorem 3.1, we
obtain the same result as that of Theorem 3.5 in [4].

Theorem 3.3. Suppose that (H1), (H2), and that the perturbing
term g(t, y, T1y) satisfies
(3.6)∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ e−αt
(
a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|

)
,

(3.7) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)w(|y(s)|)ds+ d(t)

∫ t

t0

m(s)|y(s)|ds,

(3.8) |h(t, y(t), T2y(t))| ≤ e−αt(c(t)w(|y|) + |T2y(t)|),

and

(3.9) |T2y(t)| ≤ q(t)|y(t)|+ d(t)

∫ t

t0

p(s)|y(s)|ds,

where α > 0, a, b, c, d, k,m, p, q, w ∈ C(R+), a, b, c, d, k,m, p, q ∈ L1(R+).
If
(3.10)

M(t0) =W−1
[
W (c) +M

∫ ∞

t0

(
a(s) + b(s) + c(s) + q(s)

+ b(s)

∫ s

t0

k(τ)dτ + d(s)

∫ s

t0

(m(τ) + p(τ))dτ
)
ds
]
< ∞,

where b1 = ∞, c = M |y0|eαt0 , and W , W−1 are the same functions as
in Lemma 2.4, then all solutions of (2.2) approach zero as t → ∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the assumption (H1), it is EAS. Using
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Lemma 2.3, together with (3.6), (3.7), (3.8), and (3.9), we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(
e−αs(a(s)|y(s)|+ b(s)w(|y(s)|)

+b(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ + d(s)

∫ s

t0

(m(τ) + p(τ))|y(τ)|dτ

+q(s)|y(s)|+ c(s)w(|y(s)|)
)
ds.

It follows from (H2) that

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
(
(a(s) + q(s))|y(s)|eαs

+(b(s) + c(s))w(|y(s)|eαs) + b(s)

∫ s

t0

k(τ)w(|y(τ)|eατ )dτ

+d(s)

∫ s

t0

(m(τ) + p(τ))|y(τ)|eατdτ
)
ds.

Set u(t) = |y(t)|eαt. Then, an application of Lemma 2.5 and (3.10)
obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(
a(s) + b(s) + c(s) + q(s)

+b(s)

∫ s

t0

k(τ)dτ + d(s)

∫ s

t0

(m(τ) + p(τ))dτ
)
ds
]
≤ e−αtM(t0),

where c = M |y0|eαt0 . Therefore, all solutions of (2.2) approach zero as
t → ∞.

Remark 3.4. Letting c(t) = d(t) = q(t) = 0 in Theorem 3.3, we
obtain the same result as that of Theorem 3.4 in [15].

Theorem 3.5. Suppose that (H1), (H2), and that the perturbing
term g(t, y, T1y) satisfies

(3.11) |g(t, y(t), T1y(t))| ≤ e−αt
(
a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|

)
,

(3.12) |T1y(t)| ≤ c(t)

∫ t

t0

k(s)|y(s)|ds+ d(t)

∫ t

t0

m(s)w(|y(s)|)ds,

(3.13) |h(t, y(t), T2y(t))| ≤
∫ t

t0

e−αsp(s)|y(s)|ds+ |T2y(t)|,
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and

(3.14) |T2y(t)| ≤ e−αtn(t)w(|y(t)|) +
∫ t

t0

e−αsq(s)w(|y(s)|)ds,

where α > 0, a, b, c, d, k,m, n, p, q, w ∈ C(R+), a, b, c, d, k,m, n, p, q ∈
L1(R+). If
(3.15)

M(t0) =W−1
[
W (c) +M

∫ ∞

t0

(
n(s) + eαs

∫ s

t0

(a(τ) + b(τ)

+ p(τ) + q(τ) + c(τ)

∫ τ

t0

k(r)dr + d(τ)

∫ τ

t0

m(r)dr)dτ
)
ds
]
< ∞,

where t ≥ t0, c = |y0|Meαt0 , and W , W−1 are the same functions as in
Lemma 2.4, then all solutions of (2.2) approach zero as t → ∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the assumption (H1), it is EAS by
remark 2.2. Using Lemma 2.3, together with (3.11), (3.12), (3.13), and
(3.14), we obtain

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(∫ s

t0

e−ατ ((a(τ) + p(τ))|y(τ)|

+(b(τ) + q(τ))w(|y(τ)|) + c(τ)

∫ τ

t0

k(r)|y(r)|dr

+d(τ)

∫ τ

t0

m(r)w(|y(r)|)dr)dτ + e−αsn(s)w(|y(s)|)
)
ds.

Applying the assumption (H2), we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
(
eαs

∫ s

t0

((a(τ) + p(τ))|y(τ)|eατ

+(b(τ) + q(τ))w(|y(τ)|eατ ) + c(τ)

∫ τ

t0

k(r)|y(r)|eαrdr

+d(τ)

∫ τ

t0

m(r)w(|y(r)|eαr)dr)dτ + n(s)w(|y(s)|eαs)
)
ds.

Set u(t) = |y(t)|eαt. An application of Corollary 2.9 and (3.15) obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(
n(s) + eαs

∫ s

t0

(a(τ) + b(τ) + p(τ)

+q(τ) + c(τ)

∫ τ

t0

k(r)dr + d(τ)

∫ τ

t0

m(r)dr)dτ)
)
ds
]
≤ e−αtM(t0),
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where t ≥ t0 and c = M |y0|eαt0 . Hence, all solutions of (2.2) approach
zero as t → ∞.

Remark 3.6. Letting n(t) = p(t) = q(t) = 0 in Theorem 3.5, we
obtain the similar result as that of Theorem 3.5 in [4].

Theorem 3.7. Suppose that (H1), (H2), and that the perturbing
term g(t, y, T1y) satisfies
(3.16)∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ e−αt
(
a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|

)
,

(3.17) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)w(|y(s)|)ds+ d(t)

∫ t

t0

p(s)|y(s)|ds,

(3.18) |h(t, y(t), T2y(t))| ≤ e−αt(c(t)w(|y|) + |T2y(t)|),

and

(3.19) |T2y(t)| ≤ q(t)|y(t)|+ b(t)

∫ t

t0

m(s)w(|y(s)|)ds,

where α > 0, a, b, c, d, k,m, p, q, w ∈ C(R+), a, b, c, d, k,m, p, q ∈ L1(R+).
If
(3.20)

M(t0) =W−1
[
W (c) +M

∫ ∞

t0

(
a(s) + b(s) + c(s) + q(s)

+ b(s)

∫ s

t0

(k(τ) +m(τ))dτ + d(s)

∫ s

t0

p(τ)dτ
)
ds
]
< ∞,

where b1 = ∞, c = M |y0|eαt0 , and W , W−1 are the same functions as
in Lemma 2.4, then all solutions of (2.2) approach zero as t → ∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the assumption (H1), it is EAS. Using
Lemma 2.3, together with (3.16), (3.17), (3.18), and (3.19), we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(
e−αs(a(s)|y(s)|+ b(s)w(|y(s)|)

+b(s)

∫ s

t0

(k(τ) +m(τ))w(|y(τ)|)dτ + d(s)

∫ s

t0

p(τ))|y(τ)|dτ

+q(s)|y(s)|+ c(s)w(|y(s)|)
)
ds.
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It follows from (H2) that

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
(
(a(s) + q(s))|y(s)|eαs

+(b(s) + c(s))w(|y(s)|eαs) + b(s)

∫ s

t0

(k(τ) +m(τ))w(|y(τ)|eατ )dτ

+d(s)

∫ s

t0

p(τ)|y(τ)|eατdτ
)
ds.

Set u(t) = |y(t)|eαt. Then, an application of Lemma 2.5 and (3.20)
obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(
a(s) + b(s) + c(s) + q(s)

+b(s)

∫ s

t0

(k(τ) +m(τ))dτ + d(s)

∫ s

t0

p(τ)dτ
)
ds
]
≤ e−αtM(t0),

where c = M |y0|eαt0 . Therefore, all solutions of (2.2) approach zero as
t → ∞.

Remark 3.8. Letting a(t) = c(t) = k(t) = m(t) = q(t) = 0 in
Theorem 3.7, we obtain the same result as that of Theorem 3.3 in [15].
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