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BOUNDEDNESS IN NONLINEAR PERTURBED
FUNCTIONAL DIFFERENTIAL SYSTEMS

Sang Il Choi*, Dong Man Im**, and Yoon Hoe Goo***

Abstract. In this paper, we investigate bounds for solutions of
nonlinear perturbed functional differential systems.

1. Introduction

Integral inequalities play a vital role in the study of boundedness
and other qualitative properties of solutions of differential equations.
The method incorporating integral inequalities takes an important place
among the methods developed for the qualitative analysis of solutions to
linear and nonlinear system of differential equations. As is traditional in
a pertubation theory of nonlinear differential equations, the behavior of
solutions of a perturbed system is determined in terms of the behavior of
solutions of an unperturbed system. There are three useful methods for
showing the qualitative behavior of the solutions of perturbed nonlinear
system : Lyapunov’s second method, the use of integral inequalities ,
and the method of variation of constants formula. In the presence the
method of integral inequalities is as efficient as the direct Lyapunov’s
method.

Pinto [15,16] introduced h-stability (hS) with the intention of obtain-
ing results about stability for a weakly stable system (at least, weaker
than those given exponential asymptotic stability) under some pertur-
bations. That is, Pinto extended the study of exponential asymptotic
stability to a variety of reasonable systems called h-systems. Using this
notion, Choi and Ryu[3,4] investigated bounds of solutions for nonlinear
perturbed systems and nonlinear functional differential systems. Also,
Goo et al.[8,11] studied the boundedness of solutions for nonlinear func-
tional perturbed systems.

Received April 14, 2014; Accepted April 22, 2014.
2010 Mathematics Subject Classification: Primary 34D10.
Key words and phrases: h−stable, t∞-similarity, nonlinear functional system.
Correspondence should be addressed to Yoon Hoe Goo, yhgoo@hanseo.ac.kr.



336 Sang Il Choi, Dong Man Im, and Yoon Hoe Goo

In this paper, we obtain some results on boundedness of solutions of
nonlinear perturbed functional differential systems under suitable condi-
tions on perturbed term. To do this we need some integral inequalities.

2. Preliminaries

We consider the nonlinear functional differential equation

y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,(2.1)

where t ∈ R+ = [0,∞), x ∈ Rn,f ∈ C(R+ × Rn,Rn), f(t, 0) = 0, the
derivative fx ∈ C(R+×Rn,Rn), g ∈ C(R+×Rn,Rn), g(t, 0, 0) = 0, and
T is a continuous operator mapping from C(R+,Rn) into C(R+,Rn).
The symbol | · | will be used to denote arbitrary vector norm in Rn. We
assume that for any two continuous functions u, v ∈ C(I) where I is the
closed interval and the operator T satisfies the following property:

u(t) ≤ v(t), 0 ≤ t ≤ t1, t1 ∈ I,

implies Tu(t) ≤ Tv(t), 0 ≤ t ≤ t1, and |Tu| ≤ T |u|.
Equation (2.1) can be considered as the perturbed equation of

x′(t) = f(t, x(t)), x(t0) = x0.(2.2)

Let x(t, t0, x0) be denoted by the unique solution of (2.2) passing
through the point (t0, x0) ∈ R+×Rn such that x(t0, t0, x0) = x0. Also, we
can consider the associated variational systems around the zero solution
of (2.2) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0)

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
We recall some notions of h-stability [15].

Definition 2.1. The system (2.2)(the zero solution x = 0 of (2.2))
is called an h-stable if there exist a constant c ≥ 1, δ > 0, and a positive
bounded continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1
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for t ≥ t0 ≥ 0 and |x0| ≤ δ (here h(t)−1 = 1
h(t)).

Let M denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[6].

Definition 2.2. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t),˙=
d

dt
(2.5)

for some S(t) ∈ N .

We give some related properties that we need in the sequel.

Lemma 2.3. [16] The linear system

x′ = A(t)x, x(t0) = x0,(2.6)

where A(t) is an n × n continuous matrix, is an h-system( h-stable,
respectively) if and only if there exist c ≥ 1 and a positive continuous(
bounded, repectively) function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(2.7)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (2.6).

We need Alekseev formula to compare between the solutions of (2.2)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.4. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s))g(τ, y(τ))dτ ds.
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Theorem 2.5. [3] If the zero solution of (2.2) is hS, then the zero
solution of (2.3) is hS.

Theorem 2.6. [4] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (2.3) is hS, then the solution z = 0 of (2.4) is hS.

Lemma 2.7. [13] Let u, f, g ∈ C(R+), for which the inequality

u(t) ≤ u0 +
∫ t

0
f(s)u(s)ds +

∫ t

0
f(s)

{∫ s

0
g(τ)u(τ))dτ

}
ds, t ∈ R+,

holds, where u0 is a nonnegative constant. Then,

u(t) ≤ u0

(
1 +

∫ t

0
f(s) exp(

∫ s

0
(f(τ) + g(τ))dτ)

)
ds, t ∈ R+.

Lemma 2.8. [5] Let u, λ1, λ2, w ∈ C(R+), w(u) be nondecreasing in
u, and 1

vw(u) ≤ w(u
v ) for some v > 0. If , for some c > 0,

u(t) ≤ c+
∫ t

t0

λ1(s)u(s)ds+
∫ t

t0

λ1(s)
{∫ s

t0

λ2(τ)w(u(τ))dτ
}

ds, t ≥ t0 ≥ 0,

then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ2(s)ds
]
exp(

∫ t

t0

λ1(s)ds), t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u), and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ2(s)ds ∈ domW−1
}

.

Lemma 2.9. [11] Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) , and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0

λ1(s)w(u(s))ds+
∫ t

t0

λ2(s)(
∫ s

t0

λ3(τ)u(τ)dτ)ds, 0 ≤ t0 ≤ t.

Then
(2.9)

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ)ds
]
, t0 ≤ t < b1,

where W,W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

(λ1(s)+λ2(s)
∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}

.
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Lemma 2.10. [2] Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)), and w(u)
be nondecreasing in u. Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0

λ1(s)w(u(s))ds+
∫ t

t0

λ2(s)(
∫ s

t0

λ3(τ)w(u(τ))dτ)ds, 0 ≤ t0 ≤ t.

Then
(2.10)

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ)ds
]
, t0 ≤ t < b1,

where W,W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

(λ1(s)+λ2(s)
∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}

.

3. Main results

In this section, we investigate bounds for the nonlinear functional
differential systems. Also, we examine the bounded property for the
perturbed system of (2.2)

(3.1) y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

where g ∈ C(R+×Rn,Rn), g(t, 0, 0) = 0, and T is a continuous operator
mapping from C(R+,Rn) into C(R+,Rn).

The generalization of a function h’s condition and the strong condi-
tion of a function g in Theorem 3.4[10] are the following result.

Theorem 3.1. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of
(2.2) is hS with a positive continuous function h, and g in (3.1) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ a(s)(|y(s)|+ |Ty|), t ≥ t0 ≥ 0,

and

|Ty| ≤ h(t)
∫ t

t0

k(s)|y(s)|ds ,

where a, k ∈ C(R+),
∫∞
t0

a(s)ds < ∞, and
∫ s
t0

k(s)ds < ∞. Then, the

solution y = 0 of (3.1) is hS.
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Proof. Using the nonlinear variation of Alekseev[1], any solution y(t) =
y(t, t0, y0) of (3.1) passing through (t0, y0) is given by
(3.2)

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s))
∫ s

t0

g(τ, y(τ), T y(τ)) dτds.

By Theorem 2.5, since the solution x = 0 of (2.2) is hS, the solution
v = 0 of (2.3) is hS. Therefore, by Theorem 2.6, the solution z = 0 of
(2.4) is hS. By Lemma 2.3 and (3.2) , we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1

+
∫ t

t0

c2h(t)h(s)−1a(s)
(
|y(s)|+ h(s)

∫ s

t0

k(τ)|y(τ)|dτ
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t) a(s)h(s)−1|y(s)|ds

+
∫ t

t0

c2h(t)a(s)
∫ s

t0

k(τ)h(τ)h(τ)−1|y(τ)|dτds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.7, we have

|y(t)| ≤ c1|y0|h(t) h(t0)−1

·
(
1 + c2

∫ t

t0

a(s) exp
(∫ s

t0

(c2a(τ) + k(τ)h(τ))dτ
)
ds

)

≤ c|y0|h(t) h(t0)−1,

c = c1

(
1 + c2

∫ ∞

t0

a(s) exp(
∫ s

t0

(c2a(τ) + k(τ)h(τ))dτ)ds
)
.

It follows that y = 0 of (3.1) is hS. Hence, we obtain the result.

Remark 3.2. In the linear case, we can obtain that if the zero solu-
tion x = 0 of (2.6) is hS, then the perturbed system

y′ = A(t)y +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

is also hS under the same hypotheses in Theorem 3.1 except the condi-
tion of t∞-similarity.
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Remark 3.3. Letting k(t) = 0, g(s, y(s), T y(s)) = g(s, y(s)), and
adding the increasing condition of the function h in Theorem 3.1, we
obtain the same result as that of Theorem 3.3 in [9].

Theorem 3.4. Let a, k, u, w ∈ C(R+), w(u) be nondecreasing in u,
and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar

to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0,
the solution x = 0 of (2.2) is hS with a positive continuous function h,
and g in (3.1) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ a(s)(|y(s)|+ |Ty|)

and

|Ty| ≤ h(t)
∫ t

t0

k(s)w(|y(s)|)ds,

where
∫∞
t0

a(s)ds < ∞ and
∫∞
t0

k(s)ds < ∞ . Then, any solution y(t) =
y(t, t0, y0) of (3.1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

k(s)h(s)ds
]
exp(

∫ t

t0

c2a(s)ds), t0 ≤ t < b1,

where c = c1|y0|h(t0)−1, W , W−1 are the same functions as in Lemma
2.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

k(s)h(s)ds ∈ domW−1
}

.

Proof. It is known that the solution of (3.1) is represented by the
integral equation(3.2). By Theorem 2.5, since the solution x = 0 of
(2.2) is hS, the solution v = 0 of (2.3) is hS. Therefore, by Theorem 2.6,
the solution z = 0 of (2.4) is hS. Using Lemma 2.3 and (3.2), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)a(s)
|y(s)|
h(s)

ds

+
∫ t

t0

c2h(t)a(s)
∫ s

t0

k(τ)h(τ)w(
|y(τ)|
h(τ)

)dτds.

Set u(t) = |y(t)|h(t)−1. Now an application of Lemma 2.8 yields

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

k(s)h(s)ds
]
exp(

∫ t

t0

c2a(s)ds), t0 ≤ t < b1,
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where c = c1|y0|h(t0)−1. The above estimation implies the boundedness
of y(t), and the proof is complete.

Theorem 3.5. Let a, b, k, u, w ∈ C(R+), w(u) be nondecreasing in
u, u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0)

is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some
constant δ > 0, the solution x = 0 of (2.2) is hS with the positive
continuous function h, and g in (3.1) satisfies∣∣∣∣

∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ a(s)w(|y(s)|) + b(s)|Ty|

and

|Ty| ≤ h(t)
∫ t

t0

k(s)|y(s)|ds,

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞, and
∫∞
t0

k(s)ds < ∞ . Then, any

solution y(t) = y(t, t0, y0) of (3.1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)h(τ)dτ)ds
]
,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c)+c2

∫ t

t0

(a(s)+b(s)
∫ s

t0

k(τ)h(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (3.1), respectively. By Theorem 2.5, since the solution x = 0
of (2.2) is hS, the solution v = 0 of (2.3) is hS. Therefore, by Theorem
2.6, the solution z = 0 of (2.4) is hS. Using Lemma 2.3 and (3.2) , we
obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+
∫ t

t0

c2h(t)b(s)
∫ s

t0

k(τ)h(τ)
|y(τ)|
h(τ)

dτds.

Set u(t) = |y(t)|h(t)−1. Now an application of Lemma 2.9 have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)h(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. The above estimation yields the desired result
since the function h is bounded, and the theorem is proved.
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Remark 3.6. Letting k(t) = 0, g(s, y(s), T y(s)) = g(s, y(s)) in Theo-
rem 3.5, and adding the increasing condition of the function h, we obtain
the same result as that of Theorem 3.2 in [8].

Theorem 3.7. Let a, b, k, u, w ∈ C(R+), w(u) be nondecreasing in u,
and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar

to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0,
the solution x = 0 of (2.2) is hS with the positive continuous function
h, and g in (3.1) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ a(s)w(|y(s)|) + b(s)|Ty|

and

|Ty| ≤ h(t)
∫ t

t0

k(s)|w(|y(s)|)|ds,

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞, and
∫∞
t0

k(s)ds < ∞ . Then, any

solution y(t) = y(t, t0, y0) of (3.1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)h(τ)dτ)ds
]
,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c)+c2

∫ t

t0

(a(s)+b(s)
∫ s

t0

k(τ)h(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (3.1), respectively. By Theorem 2.5, since the solution x = 0
of (2.2) is hS, the solution v = 0 of (2.3) is hS. Therefore, by Theorem
2.6, the solution z = 0 of (2.4) is hS. Using Lemma 2.3 and (3.2), we
have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+
∫ t

t0

c2h(t)b(s)
∫ s

t0

k(τ)h(τ)w(
|y(τ)|
h(τ)

)dτds.

Set u(t) = |y(t)|h(t)−1. Now an application of Lemma 2.10 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)h(τ)dτ)ds
]
,
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where c = c1|y0|h(t0)−1. The above estimation implies the boundedness
of y(t), and the proof is complete.
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