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UNIFORMLY LIPSCHITZ STABILITY OF PERTURBED

NONLINEAR DIFFERENTIAL SYSTEMS

Sang Il Choi*, Ji Yeon Lee**, and Yoon Hoe Goo***

Abstract. In this paper, we study that the solutions to perturbed
differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds+ h(t, y(t), T2y(t))

have uniformly Lipschitz stability by imposing conditions on the
perturbed part

∫ t

t0
g(s, y(s), T1y(s))ds, h(t, y(t), T2y(t)), and on the

fundamental matrix of the unperturbed system y′ = f(t, y) using
integral inequalities.

1. Introduction and Preliminaries

It is well known that one of the important techniques for investigating
the stability properties of solutions of nonlinear differential systems[7-9,
13-15] is through the use of the corresponding linear variational systems.
Dannan and Elaydi introduced a notion of uniformly Lipschitz stability
(ULS) [9]. This notion of ULS lies somewhere between uniformly sta-
bility on one side and the notions of asymptotic stability in variation of
Brauer [4] and uniformly stability in variation of Brauer and Strauss [3]
on the other side. An important feature of ULS is that for linear systems,
the notion of uniformly Lipschitz stability and that of uniformly stability
are equivalent, but for nonlinear systems, the two notions are quite dis-
tinct. Pachpatte [14, 15] studied the stability and asymptotic behavior
of the solutions of perturbed nonlinear systems under some suitable con-
ditions on the perturbation term. Choi et al. [7, 8] examined Lipschitz
and exponential asymptotic stability for nonlinear functional systems.
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Also, Goo [10, 11] and Goo et al. [5, 6, 12] investigated Lipschitz and
asymptotic stability for perturbed differential systems.

In the current paper, we study ULS for solutions of perturbed non-
linear systems using integral inequalities.

We consider the unperturbed nonlinear system

x′(t) = f(t, x(t)), x(t0) = x0,(1.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We suppose that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+×Rn and f(t, 0) = 0. Also, we consider the perturbed
functional differential system of (1.1)
(1.2)

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds+ h(t, y(t), T2y(t)), y(t0) = y0,

where g, h ∈ C(R+×Rn×Rn,Rn), g(t, 0, 0) = h(t, 0, 0) = 0, and T1, T2 :
C(R+,Rn) → C(R+,Rn) are continuous operators. The symbol | · | will
be used to denote any convenient vector norm in Rn. For an n×n matrix
A, define the norm |A| of A by |A| = sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (1.1) with x(t0, t0, x0) =
x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (1.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(1.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(1.4)

The fundamental matrix Φ(t, t0, x0) of (1.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (1.3).
This connection between the stability of the zoro solution of (1.1) and

the zero solutions of (1.3) and (1.4) has been extensively studied in [2-4,
6, 7, 14, 15].

The following definition is due to Dannan and Elaydi [9].

Definition 1.1. The system (1.1) (the zero solution x = 0 of (1.1))
is called
(S) stable if for any ϵ > 0 and t0 ≥ 0, there exists δ = δ(t0, ϵ) > 0 such
that if |x0| < δ , then |x(t)| < ϵ for all t ≥ t0 ≥ 0,
(US) uniformly stable if the δ in (S) is independent of the time t0,
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(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such
that |x(t)| ≤ M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0,
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and
δ > 0 such that |Φ(t, t0, x0)| ≤ M for |x0| ≤ δ and t ≥ t0 ≥ 0.

Let us recall some results that will be used throughout this work.

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(1.5)

where g ∈ C(R+ ×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (1.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 1.2. [2] Let x and y be solutions of (1.1) and (1.5), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 1.3. (Bihari-type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
,

where t0 ≤ t < b1, W (u) =
∫ u
u0

ds
w(s) , W

−1(u) is the inverse of W (u),

and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 1.4. [6] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10 ∈ C(R+),
w ∈ C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose
that for some c > 0 and 0 ≤ t0 ≤ t,
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u(t) ≤c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds+

∫ t

t0

λ3(s)

∫ s

t0

(
λ4(τ)u(τ)

+ λ5(τ)

∫ τ

t0

λ6(r)u(r)dr + λ7(τ)

∫ τ

t0

λ8(r)w(u(r))dr
)
dτds

+

∫ t

t0

λ9(s)

∫ s

t0

λ10(τ)w(u(τ))dτds.

Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

(λ4(τ) + λ5(τ)

∫ τ

t0

λ6(r)dr

+ λ7(τ)

∫ τ

t0

λ8(r)dr)dτ + λ9(s)

∫ s

t0

λ10(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.3,
and

b1 = sup
{
t ≥ t0 :W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

(λ4(τ)+

λ5(τ)

∫ τ

t0

λ6(r)dr + λ7(τ)

∫ τ

t0

λ8(r)dr)dτ+

λ9(s)

∫ s

t0

λ10(τ)dτ
)
ds ∈ domW−1

}
.

For the proof we need the following two corollaries.

Corollary 1.5. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for
some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)

∫ s

t0

(
λ3(τ)u(τ)

+λ4(τ)

∫ τ

t0

λ5(r)u(r)dr + λ6(τ)

∫ τ

t0

λ7(r)w(u(r))dr
)
dτds

+

∫ t

t0

λ8(s)

∫ s

t0

λ9(τ)w(u(τ))dτds.
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Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr

+ λ6(τ)

∫ τ

t0

λ7(r)dr)dτ + λ8(s)

∫ s

t0

λ9(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.3,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr

+ λ6(τ)

∫ τ

t0

λ7(r)dr)dτ + λ8(s)

∫ s

t0

λ9(τ)dτ
)
ds ∈ domW−1

}
.

Corollary 1.6. Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s
t0
λ4(τ)dτ +

λ5(s)
∫ s
t0
λ6(τ)dτ

)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.3,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ
)
ds ∈ domW−1

}
.

2. Main Results

In this section, we investigate ULS for solutions of the perturbed
functional differential systems.

To obtain ULS, the following assumptions are needed:
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(H1) The solution x = 0 of (1.1) is ULSV.

(H2) w(u) be nondecreasing in u such that u ≤ w(u) and 1
vw(u) ≤

w(uv ) for some v > 0.

Theorem 2.1. Suppose that (H1), (H2), and that the perturbing
term g in (1.2) satisfies

(2.1) |g(t, y, T1y)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|,

(2.2) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds+m(t)

∫ t

t0

p(s)w(|y(s)|)ds,

(2.3) |h(t, y(t), T2y(t))| ≤
∫ t

t0

c(s)|y(s)|ds+ |T2y(t)|,

and

(2.4) |T2y(t)| ≤ d(t)|y(t)|+ n(t)w(|y(t)|),

where a, b, c, d, k,m, n, p ∈ C(R+), a, b, c, d, k,m, n, p ∈ L1(R+), w ∈
C((0,∞)), T1, T2 are continuous operators, and
(2.5)

M(t0) =W−1
[
W (M) +M

∫ ∞

t0

(
d(s) + n(s) +

∫ s

t0

(a(τ) + b(τ) + c(τ)

+ b(τ)

∫ τ

t0

k(r)dr +m(τ)

∫ τ

t0

p(r)dr)dτ
)
ds
]
,

where M(t0) < ∞, b1 = ∞, t0 ≤ t < b1, and W , W−1 are the same
functions as in Lemma 1.3. Then the zero solution of (1.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the assumption (H1), it is ULS([9],
Theorem 3.3). Applying the nonlinear variation of constants formula
due to Lemma 1.2, together with (H2), (2.1), (2.2), (2.3), and (2.4), we
obtain



Uniformly Lipschitz of differential systems 279

|y(t)| ≤ |x(t)|

+

∫ t

t0

|Φ(t, s, y(s))|
(∫ s

t0

|g(τ, y(τ), T1y(s))|dτ + |h(s, y(s), T2y(s))|
)
ds

≤ M |y0|+
∫ t

t0

M |y0|
(∫ s

t0

((a(τ) + c(τ))
|y(τ)|
|y0|

+ b(τ)w(
|y(τ)|
|y0|

)

+ b(τ)

∫ τ

t0

k(r)
|y(r)|
|y0|

dr +m(τ)

∫ τ

t0

p(r)w(
|y(r)|
|y0|

)dr)dτ

+ d(s)
|y(s)|
|y0|

+ n(s)w(
|y(s)|
|y0|

)
)
ds.

Set u(t) = |y(t)||y0|−1. Then, an application of Lemma 1.4 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(
d(s) + n(s) +

∫ s

t0

(a(τ) + b(τ)

+c(τ) + b(τ)

∫ τ

t0

k(r)dr +m(τ)

∫ τ

t0

p(r)dr)dτ
)
ds
]
,

Thus, by (2.5), we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ. Hence the proof is complete.

Remark 2.2. Letting c(t) = d(t) = k(t) = n(t) = 0 in Theorem 2.1,
we obtain the same result as that of Theorem 3.1 in [5].

Theorem 2.3. Suppose that (H1), (H2), and that the perturbing
term g in (1.2) satisfies

(2.6)

∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|,

(2.7) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds+m(t)

∫ t

t0

p(s)w(|y(s)|)ds,

(2.8) |h(t, y(t), T2y(t))| ≤ m(t)

∫ t

t0

c(s)w(|y(s)|)ds+ |T2y(t)|,

and

(2.9) |T2y(t)| ≤ b(t)

∫ t

t0

q(s)|y(s)|ds+ d(t)|y(t)|,

where a, b, c, d, k,m, p, q ∈ C(R+), a, b, c, d, k,m, p, q ∈ L1(R+), w ∈
C((0,∞)), T1, T2 are continuous operators, and
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(2.10)

M(t0) =W−1
[
W (M) +M

∫ ∞

t0

(
a(s) + b(s) + d(s)

+ b(s)

∫ s

t0

(k(τ) + q(τ))dτ +m(s)

∫ s

t0

(c(τ) + p(τ))dτ
)
ds
]
,

where M(t0) < ∞ and b1 = ∞, t0 ≤ t < b1, and W , W−1 are the same
functions as in Lemma 1.3. Then the zero solution of (1.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the assumption (H1), it is ULS. Using
Lemma 1.2, together with (H2), (2.6), (2.7), (2.8), and (2.9), we have

|y(t)| ≤ M |y0|+
∫ t

t0

M |y0|
(
(a(s) + d(s))

|y(s)|
|y0|

+ b(s)w(
|y(s)|
|y0|

)

+ b(s)

∫ s

t0

(k(τ) + q(τ))
|y(τ)|
|y0|

dτ

+m(s)

∫ s

t0

(c(τ) + p(τ))w(
|y(τ)|
|y0|

)dτ
)
ds.

Set u(t) = |y(t)||y0|−1. Then, an application of Corollary 1.6 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(
a(s) + b(s) + d(s)

+b(s)

∫ s

t0

(k(τ) + q(τ))dτ +m(s)

∫ s

t0

(c(τ) + p(τ))dτ
)
ds
]
.

Hence, by (2.10), we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 when-
ever |y0| < δ, and so the proof is complete.

Remark 2.4. Letting c(t) = d(t) = k(t) = q(t) = 0 in Theorem 2.3,
we obtain the same result as that of Theorem 3.3 in [5].

Theorem 2.5. Suppose that (H1), (H2), and that the perturbing
term g in (1.2) satisfies

(2.11) |g(t, y, T1y)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|,

(2.12) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds+m(t)

∫ t

t0

p(s)w(|y(s)|)ds,

(2.13) |h(t, y(t), T2y(t))| ≤
∫ t

t0

c(s)w(|y(s)|)ds+ |T2y(t)|,
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and

(2.14) |T2y(t)| ≤
∫ t

t0

d(s)|y(s)|ds+ n(t)|y(t)|,

where a, b, c, d, k,m, n, p ∈ C(R+), a, b, c, d, k,m, n, p ∈ L1(R+), w ∈
C((0,∞)), T1, T2 are continuous operators, and
(2.15)

M(t0) =W−1
[
W (M) +M

∫ ∞

t0

(
n(s) +

∫ s

t0

(a(τ) + b(τ) + c(τ) + d(τ)

+ b(τ)

∫ τ

t0

k(r)dr +m(τ)

∫ τ

t0

p(r)dr)dτ
)
ds
]
,

where M(t0) < ∞ and b1 = ∞, t0 ≤ t < b1, and W , W−1 are the same
functions as in Lemma 1.3. Then the zero solution of (1.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the assumption (H1), it is ULS. Ap-
plying the nonlinear variation of constants formula due to Lemma 1.2,
together with (H2), (2.11), (2.12), (2.13), and (2.14), we have

|y(t)| ≤ M |y0|+
∫ t

t0

M |y0|
(∫ s

t0

((a(τ) + d(τ))
|y(τ)|
|y0|

+ (b(τ)+

c(τ)w(
|y(τ)|
|y0|

) + b(τ)

∫ τ

t0

k(r)
|y(r)|
|y0|

dr+

m(τ)

∫ τ

t0

p(r)w(
|y(r)|
|y0|

)dr)dτ + n(s)
|y(s)|
|y0|

)
ds.

Set u(t) = |y(t)||y0|−1. Then, an application of Corollary 1.5 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(
n(s) +

∫ s

t0

(a(τ) + b(τ) + c(τ)

+d(τ) + b(τ)

∫ τ

t0

k(r)dr +m(τ)

∫ τ

t0

p(r)dr)dτ
)
ds
]
,

Thus, by (2.15), we have |y(t)| ≤ M(t0)|y0| for someM(t0) > 0 whenever
|y0| < δ. This completes the proof.

Remark 2.6. Letting c(t) = d(t) = k(t) = n(t) = 0 in Theorem 2.5,
we obtain the same result as that of Theorem 3.1 in [5].

Theorem 2.7. Suppose that (H1), (H2), and that the perturbing
term g in (1.2) satisfies

(2.16)

∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|,
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(2.17) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds+m(t)

∫ t

t0

p(s)w(|y(s)|)ds,

(2.18) |h(t, y(t), T2y(t))| ≤ m(t)

∫ t

t0

c(s)w(|y(s)|)ds+ |T2y(t)|,

and

(2.19) |T2y(t)| ≤ b(t)

∫ t

t0

q(s)|y(s)|ds+ d(t)w(|y(t)|),

where a, b, c, d, k,m, p, q ∈ C(R+), a, b, c, d, k,m, p, q ∈ L1(R+), w ∈
C((0,∞)), T1, T2 are continuous operators, and
(2.20)

M(t0) =W−1
[
W (M) +M

∫ ∞

t0

(
a(s) + b(s) + d(s)

+ b(s)

∫ s

t0

(k(τ) + q(τ))dτ +m(s)

∫ s

t0

(c(τ) + p(τ))dτ
)
ds
]
,

where M(t0) < ∞ and b1 = ∞, t0 ≤ t < b1, and W , W−1 are the same
functions as in Lemma 1.3. Then the zero solution of (1.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the assumption (H1), it is ULS. Using
Lemma 1.2, together with (H2), (2.16), (2.17), (2.18), and (2.19), we
have

|y(t)| ≤ M |y0|+
∫ t

t0

M |y0|
(
a(s)

|y(s)|
|y0|

+ (b(s) + d(s))w(
|y(s)|
|y0|

)

+ b(s)

∫ s

t0

(k(τ) + q(τ))
|y(τ)|
|y0|

dτ

+m(s)

∫ s

t0

(c(τ) + p(τ))w(
|y(τ)|
|y0|

)dτ
)
ds.

Set u(t) = |y(t)||y0|−1. Then, an application of Corollary 1.6 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(
a(s) + b(s) + d(s)

+b(s)

∫ s

t0

(k(τ) + q(τ))dτ +m(s)

∫ s

t0

(c(τ) + p(τ))dτ
)
ds
]
.

Hence, by (2.20), we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 when-
ever |y0| < δ. Thus the theorem is proved.
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Remark 2.8. Letting c(t) = d(t) = k(t) = q(t) = 0 in Theorem 2.7,
we obtain the same result as that of Theorem 3.3 in [5].
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