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BOUNDEDNESS IN THE PERTURBED FUNCTIONAL
DIFFERENTIAL SYSTEMS
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Abstract. In this paper, we investigate bounds for solutions of
the the perturbed functional differential systems.

1. Introduction

As is traditional in a pertubation theory of nonlinear differential sys-
tems, the behavior of solutions of a perturbed system is determined in
terms of the behavior of solutions of an unperturbed system. Among
useful methods for investigating the qualitative behavior of the solu-
tions of perturbed nonlinear system of differential systems, there are the
method of variation of constants formula, Lyapunov’ second method,
and the use of inequalities. The theory of integral inequalities can be
employed to study various properties of nonlinear differential systems.
In the presence the method of integral inequalities is as efficient as the
direct Lyapunov’s method.

Pinto[13,14] introduced h-stability(hS) which is an important exten-
tion of the notions of exponential asymptotic stability and uniform Lip-
schitz stability. Also, he obtained some properties about asymptotic be-
havior of solutions of perturbed h-systems, some general results about
asymptotic integration and gave some important examples in [14]. He
obtained a general variational h-stability and some properties about as-
ymptotic behavior of solutions of differential systems called h-systems.
Also, he studied some general results about asymptotic integration and
gave some important examples in [13]. Choi and Ryu [3], Choi, Koo[5],
and Choi et al. [4] investigated bounds of solutions for the perturbed

Received May 22, 2014; Accepted July 18, 2014.
2010 Mathematics Subject Classification: Primary 34D10.
Key words and phrases: h-stability, t∞-similarity, nonlinear nonautonomous

system.
Correspondence should be addressed to Yoon Hoe Goo, yhgoo@hanseo.ac.kr.



480 Dong Man Im, Sang Il Choi, and Yoon Hoe Goo

functional differential systems. Also, Goo [7,8,9,10] studied the bound-
edness of solutions for the perturbed functional differential systems.

In this paper, we investigate bounds of solutions of the perturbed
functional differential systems.

2. Preliminaries

We consider the perturbed functional differential equation

y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,(2.1)

where t ∈ R+ = [0,∞), x ∈ Rn,f ∈ C(R+ × Rn,Rn), f(t, 0) = 0, the
derivative fx ∈ C(R+ ×Rn,Rn), g ∈ C(R+ ×Rn,Rn), g(t, 0, 0) = 0 and
T is a continuous operator mapping from C(R+,Rn) into C(R+,Rn).
The symbol | · | will be used to denote arbitrary vector norm in Rn. We
assume that for any two continuous functions u, v ∈ C(I) where I is the
closed interval, the operator T satisfies the following property:

u(t) ≤ v(t), 0 ≤ t ≤ t1, t1 ∈ I,

implies Tu(t) ≤ Tv(t), 0 ≤ t ≤ t1, and |Tu| ≤ T |u|.
Equation (2.1) can be considered as the perturbed equation of

x′(t) = f(t, x(t)), x(t0) = x0,(2.2)

Let x(t, t0, x0) be denoted by the unique solution of (2.2) passing
through the point (t0, x0) ∈ R+×Rn such that x(t0, t0, x0) = x0. Also, we
can consider the associated variational systems around the zero solution
of (2.2) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
We recall some notions of h-stability [13].
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Definition 2.1. The system (2.2) (the zero solution x = 0 of (2.2))
is called an h-system if there exist a constant c ≥ 1 and a positive
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)).

Definition 2.2. The system (2.2) (the zero solution x = 0 of (2.2))
is called (hS) h-stable if there exist δ > 0 such that (2.2) is an h-system
for |x0| ≤ δ and h is bounded.

Let M denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[6].

Definition 2.3. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t), ˙=
d

dt
(2.5)

for some S(t) ∈ N .

We give some related properties that we need in the sequal.

Lemma 2.4. [14] The linear system

x′ = A(t)x, x(t0) = x0,(2.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(2.7)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (2.6).

We need Alekseev formula to compare between the solutions of (2.2)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.8)
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where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.5. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.6. [3] If the zero solution of (2.2) is hS, then the zero
solution of (2.3) is hS.

Theorem 2.7. [4] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (2.3) is hS, then the solution z = 0 of (2.4) is hS.

Lemma 2.8. [7] Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)), and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0

λ1(s)w(u(s))ds+
∫ t

t0

λ2(s)(
∫ s

t0

λ3(τ)u(τ)dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u), and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

(λ1(s)+λ2(s)
∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}

.

Lemma 2.9. [7] Let u, p, q, w, r ∈ C(R+), w ∈ C((0,∞)) , and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

(p(s)
∫ s

t0

(q(τ)w(u(τ)) + v(τ)
∫ τ

t0

r(a)u(a)da)dτ)ds, t ≥ t0.

Then

u(t) ≤ W−1
[
W (c)+

∫ t

t0

(p(s)
∫ s

t0

(q(τ)+v(τ)
∫ τ

t0

r(a)da)dτ)ds
]
, t0 ≤ t < b1,

where W and W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 :W (c) +
∫ t

t0

(p(s)
∫ s

t0

(q(τ) + v(τ)
∫ τ

t0

r(a)da)dτ)ds

∈ domW−1
}

.
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3. Main results

In this section, we investigate the bounded property for the nonlinear
functional differential systems.

Theorem 3.1. Let a, b, k, u, w ∈ C(R+), w(u) be nondecreasing in
u, u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0)

is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some
constant δ > 0, the solution x = 0 of (2.2) is hS with the nondecreasing
function h, and g in (2.1) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ a(s)w(|y(s)|+ b(s)|Ty(s)|), t ≥ t0 ≥ 0,

and

|Ty| ≤
∫ t

t0

k(s)|y(s)|ds,

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞, and
∫∞
t0

k(s)ds < ∞. Then, any

solution y(t) = y(t, t0, y0) of (2.1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1

where c is a positive constant, W and W−1 are the same functions as in
Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (2.1), respectively. By Theorem 2.6, since the solution x = 0
of (2.2) is hS, the solution v = 0 of (2.3) is hS. Therefore, by Theorem
2.7, the solution z = 0 of (2.4) is hS. By Lemma 2.4, Lemma 2.5, and
the nondecreasing property of the function h, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+
∫ t

t0

c2h(t)b(s)
∫ s

t0

k(τ)
|y(τ)|
h(τ)

dτds.
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Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.8, we obtain

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. This completes the proof.

Remark 3.2. Letting k(τ) = 0 in Theorem 3.1, we have the similar
result as that of Theorem 3.2 in [8].

Theorem 3.3. Let a, b, k, u, w ∈ C(R+), w(u) be nondecreasing in u,
u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that the solution

x = 0 of (2.2) is hS with a nondecreasing function h and the perturbed
term g in (2.1) satisfies

|Φ(t, s, y)g(t, y, Ty)| ≤ a(s)w(|y|) + b(s)|Ty|, t ≥ t0 ≥ 0,

and

|Ty| ≤
∫ t

t0

k(s)|y(s)|ds,

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞ , and
∫∞
t0

k(s)ds < ∞. Then any

solution y(t) = y(t, t0, y0) of (2.1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1.

where W and W−1 are the same functions as in Lemma 2.8, c is a
positive constant, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (2.1), respectively. By Lemma 2.5, we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))g(s, y(s), T y(s))|ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

(a(s)w(|y(s)|) + b(s)
∫ s

t0

k(τ)|y(τ)|dτ)ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

a(s)h(t)w(
|y(s)|
h(s)

)ds

+
∫ t

t0

b(s)
∫ s

t0

h(t)k(τ)
|y(τ)|
h(τ)

dτds
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since h is nondecreasing. Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.8,
we have

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. Therefore, we obtain the result.

Remark 3.4. Letting k(τ) = 0 in Theorem 3.3, we have the similar
result as that of Theorem 3.1 in [8].

Theorem 3.5. Let a, b, k, u, w ∈ C(R+), w(u) be nondeacreasing in
u, u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0)

is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some
constant δ > 0. If the solution x = 0 of (2.2) is an h-system with a
positive continuous function h and g in (2.1) satisfies

|g(t, y, Ty)| ≤ a(t)w(|y(t)|) + b(t)|Ty(t)|, t ≥ t0, y ∈ Rn

and

|Ty(t)| ≤
∫ t

t0

k(s)|y(s)|ds,

where a : R+ → R+ is continuous with

(3.1)
∫ ∞

t0

1
h(s)

∫ s

t0

(a(τ)h(τ) + b(τ)
∫ τ

t0

h(r)k(r)dr)dτds < ∞,

for all t0 ≥ 0,
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞ , and
∫∞
t0

k(s)ds < ∞,

then any solution y(t) = y(t, t0, y0) of (2.1) satisfies

|y(t)| ≤ h(t)W−1
[
W (c)+

∫ t

t0

c2

h(s)

∫ s

t0

(a(τ)h(τ)+b(τ)
∫ τ

t0

h(r)k(r)dr)dτds
]
,

t0 ≤ t < b1, where W and W−1 are the same functions as in Lemma 2.8,
c is a positive constant, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

c2

h(s)

∫ s

t0

(a(τ)h(τ)

+ b(τ)
∫ τ

t0

h(r)k(r)dr)dτds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (2.1), respectively. By Theorem 2.6, since the solution x = 0
of (2.2) is hS, the solution v = 0 of (2.3) is hS. Therefore, by Theorem
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2.7, the solution z = 0 of (2.4) is hS. By Lemma 2.4 and Lemma 2.5, we
have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2
h(t)
h(s)

∫ s

t0

a(τ)h(τ)w(
|y(τ)|
h(τ)

)dτds

+
∫ t

t0

c2
h(t)
h(s)

∫ s

t0

b(τ)
∫ τ

t0

h(r)k(r)
|y(r)|
h(r)

drdτds.

Setting u(t) = |y(t)|h(t)−1 and using Lemma 2.9, we obtain

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

c2

h(s)

∫ s

t0

(a(τ)h(τ)

+ b(τ)
∫ τ

t0

h(r)k(r)dr)dτds
]
,

t0 ≤ t < b1, where c = c1|y0|h(t0)−1. Hence, the proof is complete.

Remark 3.6. Letting k(τ) = 0 in Theorem 3.5, we have the similar
result as that of Theorem 3.5 in [8].
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