DOI QR코드

DOI QR Code

BOUNDEDNESS IN NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Choi, Sang Il (Department of Mathematics Hanseo University) ;
  • Im, Dong Man (Department of Mathematics Education Cheongju University) ;
  • Goo, Yoon Hoe (Department of Mathematics Hanseo University)
  • Received : 2014.04.14
  • Accepted : 2014.04.22
  • Published : 2014.05.15

Abstract

In this paper, we investigate bounds for solutions of nonlinear perturbed functional differential systems.

Keywords

References

  1. V. M. Alexseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).
  2. S. K. Choi and N. J. Koo, h-stability for nonlinear perturbed systems, Ann. of Diff. Eqs. 11 (1995), 1-9.
  3. S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
  4. S. K. Choi, N. J. Koo, and H. S. Ryu, h-stability of differential systems via $t_{\infty}$-similarity, Bull. Korean. Math. Soc. 34 (1997), 371-383.
  5. S. K. Choi, N. J. Koo, and S. M. Song, Lipschitz stability for nonlinear functional differential systems, Far East J. Math. Sci(FJMS)I 5 (1999), 689-708.
  6. R. Conti, Sulla $t_{\infty}$-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari, Rivista di Mat. Univ. Parma 8 (1957), 43-47.
  7. S. Elaydi and R. R. M. Rao, Lipschitz stability for nonlinear Volterra integro-differential systems, Appl. Math. Computations 27 (1988), 191-199. https://doi.org/10.1016/0096-3003(88)90001-X
  8. Y. H. Goo, D. G. Park, and D. H. Ryu, Boundedness in perturbed differential systems, J. Appl. Math. and Informatics 30 (2012), 279-287.
  9. Y. H. Goo and D. H. Ryu, h-stability of the nonlinear perturbed differential systems, J. Chungcheong Math. Soc. 23 (2010), 827-834.
  10. Y. H. Goo, h-stability of perturbed differential systems, J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 18 (2011), 337-344. https://doi.org/10.7468/jksmeb.2011.18.4.337
  11. Y. H. Goo, Boundedness in the perturbed differential systems, J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 20 (2013), 137-144.
  12. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications Vol. I, Academic Press, New York and London, 1969.
  13. B. G. Pachpatte, A note on Gronwall-Bellman inequality, J. Math. Anal. Appl. 44 (1973), 758-762. https://doi.org/10.1016/0022-247X(73)90014-0
  14. B. G. Pachpatte, Stability and asymptotic behavior of perturbed nonlinear systems, J. Differential Equations 16 (1974), 14-25. https://doi.org/10.1016/0022-0396(74)90025-4
  15. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161-175.
  16. M. Pinto, Stability of nonlinear differential systems, Applicable Analysis 43 (1992), 1-20. https://doi.org/10.1080/00036819208840049

Cited by

  1. BOUNDEDNESS FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY vol.29, pp.4, 2014, https://doi.org/10.14403/jcms.2016.29.4.585