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A NUMERICAL METHOD FOR SINGULARLY PERTURBED

SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL

EQUATIONS OF CONVECTION DIFFUSION TYPE WITH A
DISCONTINUOUS SOURCE TERM

A. TAMILSELVAN AND N. RAMANUJAM*

ABSTRACT. In this paper, a numerical method that uses standard finite
difference scheme defined on Shishkin mesh for a weakly coupled system of
two singularly perturbed convection-diffusion second order ordinary differ-
ential equations with a discontinuous source term is presented. An error
estimate is derived to show that the method is uniformly convergent with

respect to the singular perturbation parameter. Numerical results are pre-
sented to illustrate the theoretical results.
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1. Introduction

Singular perturbation problems appear in many branches of applied mathe-
matics, ike fluid dynamics,quantum mechanics, turbulent interaction of waves
and currents, electro analytic chemistry etc. The solutions of such equations
have boundary and interior layers. The convergence of the numerical approx-
imations generated by standard numerical methods applied to such problems
depends adversely on the singular perturbation parameter. Robust parameter-
uniform numerical methods have been developed over the last 20 years. Most of
this work has concentrated on problems involving single differential equations.
Only a few authors have developed numerical methods for singularly perturbed
system of ordinary differential equations. As said above the classical numerical
methods fail to produce good approximations for singularly perturbed system
of equations also. Various methods are available in the literature in order to
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obtain numerical solution to singularly perturbed system of second order differ-
ential equations when the source term are smooth on Q [7]-[11]. Some authors
have developed numerical methods for single equations with non-smooth data
[4]. A.Tamilselvan et al [5] have developed a numerical method for a system of
two second order ordinary differential equations of reaction-diffusion type with
a discontinuous source term.

The objective of the present paper is to develop an e-uniform numerical
method for a system of singularly perturbed convection-diffusion equations with
a discontinuous source term. This discontinuity gives rise to a weak interior
layer in the exact solution of the problem, in addition to the boundary layer at
the outflow boundary point.

Note: Through out this paper, C denotes a generic constant is independent of
the singular perturbation parameter € and the dimension of the discrete problem
N.Let y : D — R, where D < R. The appropriate norm for studying the
convergence of numerical solution to the exact solution of a singular perturbation
problem is the maximum norm

| v = max |y(x)].
xeD

In case of vectors § = (y1,y2)7, we define

9(2)] = (I (@), ly2(2))" and ||y |= max{|| g1 [, [ 92 I}

2. Continuous problem
Find y1, y» € CO(Q)NCH(2) N C?*(Q~ U Q) such that

Piij(z) = —ey! (@) — a1 (z)y} () + bi1(x)y1 () + bia(x)ye(z) = fi(z), z € Q™ U OQF,
Pogi(x) = —eys (x) — az(x)ys(2) + ba1 (@)y1(2) + boz (2)ya(z) = fo(x), z € QU QF,
(1)
1O =p nl)=q, 300)=r y(l)=s, 2)
where € > 0 is a small parameter,
ar(z)>a; >0, axz)>a>0
bia(z) <0, ba(z) <0, (3)
bii(x) + bia(x) >0, and bai(x) + boa(z) > 0,Vz €,
where @ = (0,1), @ = (0,d), @+ = (d,1), d € Q. Fori,j = 1,2, a;(x), b;;(x) are
assumed to be smooth on Q; f;(x) are assumed to be smooth on Q~UQ";  fi(z)
and their derivatives are assumed to have right and left limits at z = d. The
above weakly coupled system of singularly perturbed BVP can be written in the
vector form as
Py= —eg’(z) — A(x)y (z) + B(z)y(x)
5(0) = (p,n)", §(1)=(g,%)"

Fla),
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ay( 0 buii(z) bia(x) Flo) —
where A{z) = < ()Jj) az(x))’ B(z) = <621Ex§ bzi(ﬂ?)) and (@) =

(fr(z), fo(x))T. We denote the jump discontinuity at d in any function w with
[wl(d) = w(d+) — w(d-). The above differential operators satisfy the following
maximum principle.

Theorem 1. ( Mazimum principle ) Suppose yi,y2 € CO() N C2HQ~ U OF).

Further suppose that § = (y1,y2)7 satisfies §(0) > 0, (1) >0, Py(z) >

0, Pug(z) > 0 and [§|(d) < 0. Then if there exists a function 5 = (s,

50)7 51, 82 € Co(f) NC*Q~ U Q™) such that 5(0) > 0, 5(1) > 0, Pi5(z) >

0, Pys(x) > 0 and [5)(d) < 0, then g(z) > 0, Va € Q.

Frock- Defioe ¢ — max{max(=2)(@), max(—2 —L)@)).
1

€N

Assume that the theorem is not true. Then ¢ > 0 and there exists a point zg € 12,
such that either (J2)(z0) = ¢ or (5% )(zo) = ¢ or both. Also (§+ (s)(x) >
0, vz € Q.

Case(i): (52)(z0) = (. That is, (y1 + (s1)(x0) = 0. Therefore (yy + (s1)
attains its minimum at £ = xp. Then,

0 < Py +¢8)(x0) = —e(y1 + C51)" (o) — a1 wo)(y1 + ¢s1) (20)
+ byi{zo)(y1 + ¢s1){xo) + biz(wo)(ya + Cs2){z0) <0,

which is a contradiction.

Case(ii): Similar to Case(i).

Case(jii): (5%)(x0) = (, 20 = d. That is, (y1 + (s1)(20) = 0. Therefore
(y1 + Cs1) attains its minimum at 2 = zg. Then,

0 < [z + 1) 1wo) = Wil(d) + C[s1)(@) <O,
which is a contradiction. B
Case(iv):Similar to Case(iii). Hence y(z) > 0, Va € Q. O

Corollary 2. Consider the differential equation (1) subject to the conditions (2)
- (8).Let 5 = (s1,82)T where

it rd meQudd),
§1 =82 = 1 T d +
i1t reu{l}.

Then the above maximum principle is true for the BVP [ 1).
Lemma 1. Ify1,y2 € C°(Q) N C?(Q~ UQT) then

|lws(2)] < € max{|y1(0)}, |y2(0)], [sa (D], ly2 (V)] | P llo-ue+ | P2 llo-vat b,
reQ,i=1,2.

Proof. Let A= C max{|y1(0)], [y2(0), |1 (D], [y2( V)], [| AT lla-uo+,
| Paj lo-ua+ b,z € Q,i=1,2.
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H(2) = (wi (), wy (2))" as
yi(x), and wi(z) = Asa(z) + ya(2),

)£
and observe that w*(0) > 0, w*(1) > 0, Pyw*(z) > 0, Pyw*(xz) > 0. and
[@%t])'(d) < 0. Then w*(z) > 0,Vz € Q by Theorem 1, which completes the
proof. ]

Define barrier functions w

) =
wk(z) = Asi(2) £ i (o

The sharper bounds on the derivatives of the solution are obtained by de-
composing the solution ¢ into regular and singular components as, §y = v + W,
where v = (v1,v2)T and @ = (w1, w2)T. The regular component @ can be written

62

in the form v = ¥y + ((E) g) U1 + (0 22> g, where ¥9 = (vo1,v02)%, ¥ =

(v11,v12)T, Ty = (v, va2)T are defined respectively to be the solutions of the
problems
—AT)+ Bty = f, (1) =g(1),z € QU QT
~Av + By, =9, un(l)=0,zeQ 0UQ*f

and

'Ol

P, =7, z#d, v20) =02(d) =72(1) =
Thus the regular component @ is the solution of
Pi=f,z€Q U QT, 50) = %(0) + £01(0), 5(d) = vo(d) + et (d), v(1) = g(1).

Further we decompose w as w = 1w, -+ Wy where W = (wu,wlg)T, Wy =
(’w21,w22)T. Thus w1 = w11 + woy, andws = wis + wae. Note that @ is the
solution of

Pw, =0, z€Q w(0)=1u(0)—7v0), w(1)=0 (4)
and w5 is the solution of
Pwy =0, z€Q UQt, (5)
wy(0) =0, Wa(1) =0 (6)
[ws)(d) = ('] (d)- (7)

The following lemma provides the bound on the derivatives of the regular and
singular components of the solution .

Lemma 2. The solution § can be decomposed into the sum § = U + @ where
U and @ are regular and singular components. Further, reqular components and
their derivatives satisfy the bounds

1o <o+ %), k=0,1,23 j=12zeq

Proof. Using appropriate barrier functions, applying Theorem 1 and adopting
the method of proof used in [4] and [5], the present lemma can be proved. [
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Lemma 3. For each integer k, satisfying 0 < k < 3, the solution w1 of (4)
satisfies the bounds

B ()] < Ceke0mE, Vo e, j=1,2

Proof. Using appropriate barrier functions, applying Theorem 1 and adopting
the method of proof used in [4] and [5] , the present lemma can be proved. [

Lemma 4. For each integer k, satisfying 0 < k < 3, the solution 1y of (5)
satisfies the bounds for j == 1,2

|wa;(x)] < Ce

|w‘(k,)(a:)| < Celake—ax/e, e,
2] - CvEl—lce—a(m—d)/&" reQt.

Proof. Using appropriate barrier functions, applying Theorem 1 and adopting
the method of proof used in [4] and [5], the present lemma can be proved. [

3. Discrete problem

A fitted mesh method for the BVP (1)-(2) is now introduced. On (2 a piecewise
uniform mesh of N mesh interval is constructed as follows.

The interval Q~ is subdivided into two subintervals [0,01] and [oy,d] for
some oy satisty 0 < 03 < % On each subinterval a uniform mesh with N/4
mesh-intervals is placed. The subinterval [d,d + 03] and [d + 02, 1] of QT are
treated analogously for some o9 that satisfy 0 < g9 < %. The interior points
of the mesh are denoted by

N N
Of ={m:1<i< 5 - Jufm: S +H1<i<N -1}

Clearly /2 = d and Q. = {z;}§'. Tt is fitted to the BVP (1)-(2) by choosing

oy and o2 to be the following functions of N and «

1—-d
2

where o = min{o;, az}. We now introduce the following notations for the four
mesh widths
Aoy B A(d — 1) _dop B 41 —d—09)
h1 = T, hQ = T} h3 = W_ and h:4 = N .
Then the fitted mesh method for the BVP (1)-(2) is

d
olzmin{—z}—,%lnN} and oy = min{ ,%ln]\f’},

PINY(xg) = ~562Y1 (.Tz) — a1 (:m)D“Lyl(a:z) + bn (:171))”1 (-1:7,) + b12(xi)Y2($i) = fl (3?2)7
PQN?(:I:Z-) = 7652}/2(1131') - a2($i)D+3/2($1’) + bay (2)Y: (1) + boz{@:) Ya(z:) = falzs),
Yi{zo) = 41(0), Ya(wo) =92(0), Yi(zn) =w(1), Ya(an)=y(1),

D Y(znss) = DY (2ny2). (8)



1284 A. Tamilselvan and N. Ramanujam

The finite difference operator §2 is the central difference operator defined as
DY —D7)Y;(xs .
8?Yj(z:) = ((ggw—w)_fﬁg), Jj=1,2, where

DY () = LEIHE)  and DY (ay) - D)

The difference operator PV can be defined as
N+ N — PlNY(ﬁz) _ 7552 0 o N a1(.1‘1')D+ 0 S )
P () = <P2N Yao) =\ 0 —es?) Y (@) 0 as(wi)p+ ) ¥ (@)

bii(zi) biz(mi)\ o 2 — Fla
N <b21(zi) b22(wi)) Y(z:) = f(@:).

Analogous to the continuous results stated in Theorem 1 and Lemma 1 one
can prove the following results.

Theorem 3. (Discrete mazimum principle) Suppose that a mesh function w;
satisfies @p > 0,on > 0, PLN@; > 0, P,N@; > 0 for all z; € QN and Dﬂz% —
D wy < 0. Then if there exists a mesh function & such that 55 > 0, sy >
0, PNs >0, P,"s; >0 for all z; € QY and DYsy — D78y <0, thenw; 20
for all z; € QN.
Theorem 4. If Y (x;) is the solution of the problem (8), then

|Y(d)| < C.

_ The discrete solution )_’(aci_) can be decomposed into the sum Y'(z;) = V(2;) +
W (x;). Define the function V to be the solution of

PV (x) = flz:), Vo, € QY \{d}
V(0)=o(0), V(d)=1uv(d), V(1)=1u5(1).

We define W to be the solution of

PYW(z;) =0, Va; € QN \ {d} (9)
W) =w(0), W(1)=uw(1) (10)
[DW (d)] = —[DV (d)], (11)

where, throughout this section, we denote the jump in the derivative of a mesh
function Z at the point z; = d by

[DZ(d)] = DT Z(d) — D~ Z(d).
Analogously to the continuous case we can further decompose w as W =W+
W The error in the numerical solution can be written in the form (Y —g)(z;) =
(V —0)(z;) + (W — w)(z;) where W1 is defined as the solution of

PYW, =0 v € QN U {d} (12)

V1(0) = @(0), Wi(1) =0 (13)
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and W is defined as the solution of

PYW, =0 va; € QY U {d} (14)
W2(0) = @(0), Wa(1) =0, (15)
[DW2(d)] = ~[DV(d)] — [DW:(d)). (16)

Lemma 5. At each mesh point z; € QY the error of the reqular component
satisfies the estimate

7 ol < Gy 5]) o 0
(V —0)(z;)] < (g%ig : 3) on Q.

Proof. Considering the differential and difference equations, and following the
usual procedure, we get

| PY(V ) (@) | =| (P~ PY)o(as) |

< (5@ —zie) o |+ 25 s 2 [0
T\ S im) |09 || 4928 (y — ) || 05 |

CN-!
= (CN‘1> ‘
Now, defining the mesh functions ¥*(z;) as
= CN=Yd ~ x;) =
tN i _ ,
¥4 = (Nl o))+ (7 = 0)(a)
and observing that U+ (zo) =0, ¥*(zy) >0, PY¥*(z;) > 0and DTIE —
_ _ _ _ 2
D*\IIJ‘& < 0. We, by Theorem 3, get ¥*(x;) >0, 2; € Q, which leads to the

desired result.
Similar proof can be given on Q7. U

Lemma 6. At each mesh point z; € Q| the error of the singular component
satisfies the estimate

= _ CN~'lnN
0wt < (GN 1)
Proof. Using the procedure adopted in [4], proof follows. ]

Note that the jump at © = d in the derivative of the weak interjor layer
function ws. In the following lemma we establish the bound for W.

Lemma 7. Suppose Wy be the solution of (14), then it satisfies the following
e—uniform bound
- C(l+eINY
< .
oWl < (6 i)
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Proof. At the point z = d, first we consider
D V(d) = D (V —3){d) + D~ 9(d).

19 1< (&)

Hence, |D~o(d)] < (g) and

Note that

|D~(V - 5)(d)| = I(V —0)(d) — (V —0)(d - H1)| P (CN—l) ’

Hl C]\«'T_l

Therefore, | D~V (d)| < (

Now we consider

C(1+ N‘l))
C(1+NYH)"

DYV(d) = DYV —5)(d) + D' o(d)

C . - CN!
and | ¢ |ja+< (C) As in [1, lemma 3.14], |eD"(V — 0)}(d)] < (CN1>'
Therefore,

_ oN" c C(l+e'N7Y)
On Q—,

Wiel < (1)

implies that |D~Wi(d)| < C). On Q. D¥*Wy(d) = DY(W; — wi)(d) +

(e
Dty (d). Note that | ] ||< (g) . Hence [ DWW, (d)| < |DH(W; — w)(d)] +

) ) Ce -k /—ad/e
(g) . Using the known results and the fact that || 11)&“ lo+< ( Cg“ k;ad /e |

we can show that | Dt (Wy — w1)(z;)] < (

C .
( C) . Therefore,

g) , which implies that | DTW;(d)] <

= C(l+¢7 N
W@l < (g4 TN
Lemma 8. The following e—uniform bound

[Wa(2:)| < Ce|[DWa(d)]|
is valid, where Wy is the solution of (14).
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Proof. Consider the following barrier functions gb;-t, j =1,2where

¢j[($z') =

Ce|[DW,o(d)]| {1, z <d

Yi(zi), = >d
where 1 = (11,12)7 is the solution of
—ed?P(z;) — aDtep(z;) =0, 2, € QN NQt,
¥(d) =1, '15(1) =0,
DHap(x;) <0, x; > d.
Using the procedure adopted in [4], the remaining proof can be given. 0

Lemma 9. At each mesh point z; € QV, the error of the regular component
satisfies the estimate

0% = wa)e)| < (G o)
Proof. From (7), we have [v/(d)] + [w)(d)] = 0 and so
[D(Wa — 2)(d) = [DW2(d)] — [Dws(d)]
= [V'(@)] = [PV (d)] + [wy(d)] — [DWa(d)] — [DW(d)].
Note that
[0'(d)] — [DV(d)] = v/ (d+) — D¥o(d) + D v(d) — ¥/ (d—) + [D(V —)(d)].

From the proof of previous lemma,

IV )@l < (G )
and

@) - (Do) < (E3-1).
Hence

@)~ DV @) < (v )
Similarly,

{w3(d)] = [Dwz(d)]] < [ DY Wa(d) ~ @y(d+)| + | D™ Wa(d) — @y(d-)]

_ (Chawl? (@) + CH P (d )]
=\ Chalo® (@) + CHL 0@ (4o

< CN~'lnN
“\CN!'InN )’

since e~ ld=Hi)/e — g-ald-)/e < g—ad/2e Finally,



1288 A. Tamilselvan and N. Ramanujam

Dwa) < (Ol + HDlo 1)
~ \Clha + Hy)|a$? (@ — H)|
< (Clhzt Hy)e 2e~ald-Hi)/e

<h2+H1)6—2e—a(d—H1)/a
< CN-'InN
= \CNInN /"
Also, we know that )
- CN 'InN
D0~ m) (@]l < (N 1)
Thus _ CN'InN
[DW2 —w2)(]| < | cnSian |-

Let us now consider the truncation error at the interval mesh points. Using
standard truncation error bounds and the bounds on the derivatives of w5, for

€ (0,01), we get )
= _ Chie o
PO~ e < (G0

< CN~'InN
= \CN-'IlnN /"

For z; € [O’l,d),
|PY (Wa — w2) ()]

IA

(C ” 5"17,2/ ”(12777171741) +C “ U_)IZ '
C ” EWy ”(xi—17171'+1) +C ” Wy |

Cefaal/s
Cefocol/s
CN—!
CN-!
For z; € (d,d+ 02),

v Chaye—] CN-'InN
P (Wz"w2)'§<0h25—1 S{onv-1mn

and for z; € [d+ 02,1),

[zi,ﬂwﬂ])
[Ii,zi+1]

IA

|PN (W — )]

IA

<C “ E’lf)% ||($i—1,wi+1) +C || w:2 | [ z+1]>
C ” EWy |I($171,$i+1) +C ” Wy ”[171'737;—{—1]

Ce—a(a'gfhz)/&?
Ce-a(athg)/s

CN-!
CN—')-

IN

IA

Combining all these give
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- _ CN-YIpN
PN )| < ( )

CN-'InN
and
(,N In N
D07 —o(@ll < | yfuy

=)

Consider the following barrier function

1,1?.3'Sd

-4 +CN ' InN(1l —z;), for j=1,2
jy Ti 2

¢](.’Lg) = CNﬁlth{

where 1); is the solution of the problem

—e6%P; —aDMp; =0, ;(d) =1, ¢;(1) =0, for j=1,2.
The proof is completed in the usual way using theorem 3. |
Theorem 5. Let §j(x) = (yi(z), y2(2)), z € Q be the solution of (1). Further

let Y(z;) = (Yi(x:), Yo(2:))T, 2; € QY be the numerical solution of problem (8).
Then we have

sup || Y1 =y loy<CN"TInN

O<e<l
and
sup | Y2 — 92 lav< CN 'InN.
0<e<1 N
Proof. Combining the Lemmas 5, 6 and 9 we get the required result. (W

4. Numerical results

In this section, two examples are given to illustrate the numerical method
discussed in this paper.

Consider the following singularly perturbed boundary value problems.

Example 1.
2, <05
— ey (z) — 0.8y, 3 ~ (@) =4
591() 11 (2) + 3y (2) y2(l) {)1_0’ z > 0.5,
1.8, x<0.5
— ey (2) = yo(2) — 1 (z) + 3y (z) = ’
ey (1) — yh(2) — yi(2) + 3y2(x) {0.8, x> 0.5,

(0 =0, wn(l)=2, %w(0)=0, y(l)=2
Example 2.

1+z, 2<05

—ey(z) — T+ 2 (@) + 2+ )n(z) — (1 + 2)y(z) = {em > 05
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z, <05

—eys (@) + 2 - 2)up(e) — (L oy (@) + 2+ ahie(@) = 0,0 LS 05

y1(0) =0, yn(1)=1, 5(0)=0, p(1)=L1
The e—uniform rate of convergence is determined using the double mesh error

N N 2N
Dgj = max|Y5 — Y75
which is the difference between the values of the j** component of the solution
on a mesh of N points and the interpolated value of the solution, at the same
point, on a mesh of 2N points. Here the range of the singular perturbation
parameter is taken as ¢ = {271, ..., 2730},
For each values of NV,
DN
DY =maxD[;, j=1,2 p; =logy(px) J=12
J

€,5°

are computed.
TABLE 1. Values of DY, D¥ and p¥ for the solution component Y;

£,1y

] I Number of mesh points N B
1 [ 32 | 64 | 128 [ 256 [ 512 [ 1024 1
DY | 3.0993e-002 | 1.7890e-002 | 1.1151e-002 | 6.4060e-003 | 3.6164e-003 | 2.0081e-003

Py 0.7928 0.6820 0.7997 0.8249 0.8487 -

TABLE 2. Values of DY,, DY and pY’ for the solution component Y3

£,2

Number of mesh points N I
32 I 64 I 128 I 256 ] 512 | 1024 [
DY 1 2.7238e-002 | 1.5904e-002 | 9.6979¢-003 | 5.9419e-003 | 3.4324e-003 | 1.9536e-003
Py 0.7762 0.7136 0.7067 0.7917 0.8131 -

TABLE 3. Values of Dé\{g, DY and p¥ for the solution component
Y1 of example2

I [ Number of mesh points N

I | 32 | 64 I 128 [ 256 | 512 [ 1024 i
DY | 3.5256e-002 | 2.1983e-002 | 1.3450e-002 | 7.6762¢-003 | 4.3244e-003 | 2.4092e-003
pl 0.6815 0.7088 0.8091 0.8279 0.8440 -

TABLE 4. Values of DQIQ, DY and pY for the solution component
Y2 of example 2

I ] Number of mesh points N
([ [ 32 I 64 | 128 [ 256 | 512 [ 1024 I

Dév 2.5072e-002 | 1.6011e-002 | 1.1992e-002 | 7.5088e-003 | 4.6753e-003 | 2.7115e-003
pé\] 0.6470 0.4170 0.6754 0.6835 0.7859 -
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g=2" g=27"

£=2 e=2°
2 2
4
g 7
15 ’ 15 7
/
- 7/
4 7
e
1 4 1 f
a = 4
= 2 =~ ’
05 < 05 Rinagiid
o 0
0 02 04 06 08 1 o 02 04 06 08 1

FIGURE 1. For various values of ¢ and N = 128, the solution graph
of Y1 and Y: of examplel

€=273 82274
1 7 1
Y, 7 !
0.8 v / 0.8 //
—-——— ’
2 , /
06 7 0.6 /
/ /
/ /
04 s 0.4 7
< /
P e /
02/, - 02(f, T~ ~L
) b -~
0 0
0 0.2 0.4 06 0.8 1 [ 0.2 0.4 0.6 08 1
e=275 =270
1 1
’ {4
/ /
0.8 , 0.8 ,
/ 7
06 / 0.6 /
7/ 7
/ /
04 ’ 0.4 /
7/ /
.
020 ~ — s 02y ._ //
i T~ v T~ s
~ ~.
[0 0
0 02 0.4 086 0.8 1 0 0.2 0.4 0.8 0.8 1

FIGURE 2. For various values of ¢ and N = 128, the solution graph
of Y1 and Y, of example2

5. Conclusion

A two point boundary value problem for a system of two second order or-
dinary differential equations of convection diffusion type with a discontinuous
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source term is considered. We constructed a numerical method for solving this
problem,which generates e—uniform convergent numerical approximations to the
solution. An error estimate is derived to show that the method is uniformly
convergent with respect to the singular perturbation parameter. T'wo numerical
examples are presented which are in agreement with the theoretical results.
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