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h-STABILITY AND BOUNDEDNESS IN FUNCTIONAL
PERTURBED DIFFERENTIAL SYSTEMS

Yoon Hoe Goo

Abstract. In this paper, we investigate h-stability and boundedness for solutions
of the functional perturbed differential systems using the notion of t∞-similarity.

1. Introduction and Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(1.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-space. We
assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on R+ × Rn

and f(t, 0) = 0. Also, consider the functional perturbed differential systems of (1.1)

(1.2) y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds + h(t, y(t), Ty(t)), y(t0) = y0,

where g ∈ C(R+ × Rn,Rn), h ∈ C(R+ × Rn × Rn,Rn) , g(t, 0) = 0, h(t, 0, 0) = 0,
and T : C(R+,Rn) → C(R+,Rn) is a continuous operator .

For x ∈ Rn, let |x| = (
∑n

j=1 x2
j )

1/2. For an n× n matrix A, define the norm |A|
of A by |A| = sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (1.1) with x(t0, t0, x0) = x0, existing
on [t0,∞). Then we can consider the associated variational systems around the zero
solution of (1.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(1.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(1.4)
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The fundamental matrix Φ(t, t0, x0) of (1.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [16].

Definition 1.1. The system (1.1) (the zero solution x = 0 of (1.1)) is called an
h-system if there exist a constant c ≥ 1, and a positive continuous function h on R+

such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)).

Definition 1.2. The system (1.1) (the zero solution x = 0 of (1.1)) is called
(hS) h-stable if there exists δ > 0 such that (1.1) is an h-system for |x0| ≤ δ and h

is bounded.

Integral inequalities play a vital role in the study of boundedness and other quali-
tative properties of solutions of differential equations. In particular, Bihari’s integral
inequality continuous to be an effective tool to study sophisticated problems such
as stability, boundedness, and uniqueness of solutions. The behavior of solutions of
a perturbed system is determined in terms of the behavior of solutions of an unper-
turbed system. There are three useful methods for showing the qualitative behavior
of the solutions of perturbed nonlinear system : the use of integral inequalities, the
method of variation of constants formula, and Lyapunov’s second method.

The notion of h-stability (hS) was introduced by Pinto [15, 16] with the intention
of obtaining results about stability for a weakly stable system (at least, weaker
than those given exponential asymptotic stability) under some perturbations. That
is, Pinto extended the study of exponential asymptotic stability to a variety of
reasonable systems called h-systems. Choi, Ryu [2] and Choi, Koo, and Ryu [3]
investigated bounds of solutions for nonlinear perturbed systems. Also, Goo [7,8,9]
and Goo et al. [11] investigated boundedness of solutions for nonlinear perturbed
systems.

Let M denote the set of all n×n continuous matrices A(t) defined on R+ and N
be the subset of M consisting of those nonsingular matrices S(t) that are of class C1

with the property that S(t) and S−1(t) are bounded. The notion of t∞-similarity in
M was introduced by Conti [5].
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Definition 1.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if there
exists an n× n matrix F (t) absolutely integrable over R+, i.e.,

∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(1.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all n × n

continuous matrices on R+, and it preserves some stability concepts [5, 12].
In this paper, we investigate bounds for solutions of the nonlinear differential

systems using the notion of t∞-similarity.
We give some related properties that we need in the sequal.

Lemma 1.4 ([16]). The linear system

x′ = A(t)x, x(t0) = x0,(1.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively h-stable) if
and only if there exist c ≥ 1 and a positive and continuous (respectively bounded)
function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(1.7)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1) and the
solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(1.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the solution
of (1.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of constants
formula due to Alekseev [1].

Lemma 1.5. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and
(1.8), respectively. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.
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Theorem 1.6 ([2]). If the zero solution of (1.1) is hS, then the zero solution of
(1.3) is hS.

Theorem 1.7 ([3]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥
t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (1.3) is hS,
then the solution z = 0 of (1.4) is hS.

Lemma 1.8 ([4]). (Bihari− type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c +
∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u), and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ(s)ds ∈ domW−1
}

.

Lemma 1.9 ([10). ] Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)u(τ)dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds ∈ domW−1
}

.

Lemma 1.10 ([8]). Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds
]
, t0 ≤ t < b1,
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where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds ∈ domW−1
}

.

2. Main Results

In this section, we investigate hS and boundedness for solutions of the functional
perturbed differential systems via t∞-similarity.

Lemma 2.1. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C[R+,R+] and suppose that, for some c ≥ 0
and t ≥ t0, we have
(2.1)

u(t) ≤ c+
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)
∫ s

t0

(
λ3(τ)u(τ) + λ4(τ)

∫ τ

t0

λ5(s)u(r)dr
)
dτds.

Then

(2.2) u(t) ≤ c exp
∫ t

t0

[λ1(s) + λ2(s)
(∫ s

t0

(λ3(τ) + λ4(τ)
∫ τ

t0

λ5(r)dr)dτ
)
]ds, t ≥ t0.

Proof. Define a function v(t) by the right member of (2.1). Then, we have v(t0) = c

and

v′(t) = λ1(t)u(t) + λ2(t)
(∫ t

t0

(λ3(s)u(s) + λ4(s)
∫ s

t0

λ5(τ)u(τ)dτ)ds
)

≤
[
λ1(t) + λ2(t)

(∫ t

t0

(λ3(s) + λ4(s)
∫ s

t0

λ5(τ)dτ)ds
)]

v(t), t ≥ t0,

since v(t) is nondecreasing and u(t) ≤ v(t). Now, by integrating the above inequality
on [t0, t] and v(t0) = c, we have

(2.3) v(t) ≤ c exp
∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)
∫ τ

t0

λ5(r)dr)dτ
)
ds.

Thus (2.3) yields the estimate (2.2). ¤

Theorem 2.2. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0
and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (1.1) is hS with the
increasing function h, and g in (1.2) satisfies

(2.4)
∣∣∣∣g(t, y(t))

∣∣∣∣ ≤ a(t)|y(t)|+ b(t)
∫ t

t0

k(s)|y(s)|ds

and

(2.5) |h(t, y(t), T y(t))| ≤ c(t)|y(t)|, t ≥ t0 ≥ 0,
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where a, b, c, k, q ∈ C(R+),
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞,∫∞
t0

k(s)ds < ∞,
∫∞
t0

q(s)ds < ∞, and

c = c1 exp
(
c2

∫ ∞

t0

[c(s) +
∫ s

t0

(a(τ) + b(τ)
∫ τ

t0

k(r)dr)dτ ]ds
)

< ∞.

Then, any solution y(t) = y(t, t0, y0) of (1.2) is hS.

Proof. Using the nonlinear variation of constants formula of Alekseev [1], any solu-
tion y(t) = y(t, t0, y0) passing through (t0, y0) is given by
(2.6)

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s))(
∫ s

t0

g(τ, y(τ))dτ + h(s, y(s), T y(s)))ds.

By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution v = 0 of (1.3) is
hS. Therefore, by Theorem 1.7, the solution z = 0 of (1.4) is hS. In view of Lemma
1.4, the hS condition of x = 0 of (1.1), (2.4),(2.5), and (2.6), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(∫ s

t0

(a(τ)|y(τ)|

+b(τ)
∫ τ

t0

k(r)|y(r)|dr)dτ + c(s)|y(s)|
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
c(s)

|y(s)|
h(s)

+
∫ s

t0

(a(τ)
|y(τ)|
h(τ)

+ b(τ)
∫ τ

t0

k(r)
|y(r)|
h(r)

dr)dτ
)
ds.

Set u(t) = |y(t)||h(t)|−1. Now an application of Lemma 2.1 yields

|y(t)| ≤ c1|y0|h(t) h(t0)−1 exp
(
c2

∫ t

t0

[c(s) +
∫ s

t0

(a(τ) + b(τ)
∫ τ

t0

k(r)dr)dτ ]ds
)

≤ c|y0|h(t)h(t0)−1,

where c = c1 exp
(
c2

∫∞
t0

[c(s) +
∫ s
t0

(a(τ) + b(τ)
∫ τ
t0

k(r)dr)dτ ]ds
)
. Thus, any solution

y(t) = y(t, t0, y0) of (1.2) is hS, and so the proof is complete. ¤

Theorem 2.3. Let a, b, c, k, u, w ∈ C(R+), w(u) be nondecreasing in u such that
u ≤ w(u) and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to

fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution
x = 0 of (1.1) is hS with the increasing function h, and g in (1.2) satisfies
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(2.7)
∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t))|+ b(t)
∫ t

t0

k(s)w(|y(s)|)ds, t ≥ t0 ≥ 0,

and

(2.8) |h(t, y(t), T y(t))| ≤ c(t)|y(t)|,
where

∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞, and
∫∞
t0

k(s)ds < ∞.
Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and (1.2),
respectively. By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, by Theorem 1.7, the solution z = 0 of (1.4) is hS.
Using the nonlinear variation of constants formula (2.6), the hS condition of x = 0
of (1.1), (2.7), and (2.8), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(
a(s)w(|y(s)|) + c(s)|y(s)|

+b(s)
∫ s

t0

k(τ)w(|y(τ)|)dτ
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)(c(s)
|y(s)|
h(s)

+ a(s)w(
|y(s)|
h(s)

))ds

+
∫ t

t0

c2h(t)b(s)
∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτds.

Defining u(t) = |y(t)||h(t)|−1, then, by Lemma 1.10, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
.

Thus, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞). This completes
the proof. ¤

Remark 2.4. Letting c(t) = 0 in Theorem 2.3, we obtain the same result as that
of Theorem 3.2 in [7].
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Theorem 2.5. Let a, b, c, k, u, w ∈ C(R+), w(u) be nondecreasing in u such that
u ≤ w(u) and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to

fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution
x = 0 of (1.1) is hS with the increasing function h, and g in (1.2) satisfies

(2.9)
∫ t

t0

|g(s, y(s))|ds ≤ a(t)|y(t)|+ b(t)
∫ t

t0

k(s)|y(s)|ds, t ≥ t0 ≥ 0,

and

(2.10) |h(t, y(t), Ty(t))| ≤ c(t)w(|y(t)|),
where

∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞, and
∫∞
t0

k(s)ds < ∞.
Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and (1.2),
respectively. By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, by Theorem 1.7, the solution z = 0 of (1.4) is hS.
Applying Lemma 1.4, the hS condition of x = 0 of (1.1), (2.6), (2.9), and (2.10), we
have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(
a(s)|y(s)|

+b(s)
∫ s

t0

k(τ)|y(τ)|dτ + c(s)w(|y(s)|)
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)(a(s)
|y(s)|
h(s)

+ c(s)w(
|y(s)|
h(s)

))ds

+
∫ t

t0

c2h(t)b(s)
∫ s

t0

k(τ)
|y(τ)|
h(τ)

dτds.

Set u(t) = |y(t)||h(t)|−1. Then, by Lemma 1.9, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,
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where c = c1|y0|h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is bounded
on [t0,∞). Hence, the proof is complete. ¤

Remark 2.6. Letting c(t) = 0 and w(u) = u in Theorem 2.5, we obtain the same
result as that of Theorem 3.1 in [6].

Lemma 2.7. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

(2.11)
u(t) ≤ c +

∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)
∫ s

t0

λ3(τ)u(τ)dτds

+
∫ t

t0

λ4(s)
∫ s

t0

λ5(τ)w(u(τ))dτds.

Then

(2.12)
u(t) ≤ W−1

[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ

+ λ4(s)
∫ s

t0

λ5(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ

+ λ4(s)
∫ s

t0

λ5(τ)dτ)ds ∈ domW−1
}

.

Proof. Define a function v(t) by the right member of (2.11). Then

v′(t) = λ1(t)u(t) + λ2(t)
∫ t

t0

λ3(s)u(s)ds + λ4(t)
∫ t

t0

λ5(s)w(u(s))ds,

which implies

v′(t) ≤
[
λ1(t) + λ2(t)

∫ t

t0

λ3(s)ds + λ4(t)
∫ t

t0

λ5(s)ds
]
w(v(t))

since v and w are nondecreasing, u ≤ w(u), and u(t) ≤ v(t) . Now, by integrating
the above inequality on [t0, t] and v(t0) = c, we have

(2.13) v(t) ≤ c +
∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ + λ4(s)
∫ s

t0

λ5(τ)dτ
)
w(v(s))ds.

Then, by the well-known Bihari-type inequality, (2.13) yields the estimate (2.12). ¤
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Theorem 2.8. Let a, b, c, k ∈ C(R+), w(u) be nondecreasing in u such that u ≤
w(u) and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to

fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution
x = 0 of (1.1) is hS with the increasing function h, and g in (1.2) satisfies

(2.14)
∣∣∣∣g(t, y(t))

∣∣∣∣ ≤ a(t)|y(t)|

and

(2.15) |h(t, y(t), T y(t))| ≤ b(t)|y(t)|+ c(t)
∫ t

t0

k(τ)w(|y(τ)|)dτ,

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞, and
∫∞
t0

k(s)ds < ∞.
Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞) and

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(b(s) +
∫ s

t0

a(τ)dτ + c(s)
∫ s

t0

k(τ)dτ)ds
]

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(b(s) +
∫ s

t0

a(τ)dτ + c(s)
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and (1.2),
respectively. By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, by Theorem 1.7, the solution z = 0 of (1.4) is hS.
Using the nonlinear variation of constants formula (2.6), the hS condition of x = 0
of (1.1), (2.14), and (2.15), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(∫ s

t0

a(τ)|y(τ)|dτ

+b(s)|y(s)|+ c(s)
∫ s

t0

k(τ)w(|y(τ)|)dτ
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
b(s)

|y(s)|
h(s)

+
∫ s

t0

a(τ)
|y(τ)|
h(τ)

dτ + c(s)
∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτ
)
ds.

Set u(t) = |y(t)||h(t)|−1. Then, it follows from Lemma 2.7 that we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(b(s) +
∫ s

t0

a(τ)dτ)ds + c(s)
∫ s

t0

k(τ)dτ
]
,
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where c = c1|y0|h(t0)−1. From the above estimation, we obtain the desired result.
Thus, the theorem is proved. ¤

Lemma 2.9. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

(2.16)
u(t) ≤ c +

∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)
∫ s

t0

λ3(τ)w(u(τ))dτds

+
∫ t

t0

λ4(s)
∫ s

t0

λ5(τ)w(u(τ))dτds.

Then

(2.17) u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ + λ4(s)
∫ s

t0

λ5(τ)dτ)ds
]
,

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ

+λ4(s)
∫ s

t0

λ5(τ)dτ)ds ∈ domW−1
}

.

Proof. Define a function v(t) by the right member of (2.16) . Then

v′(t) = λ1(t)u(t) + λ2(t)
∫ t

t0

λ3(s)w(u(s))ds + λ4(t)
∫ t

t0

λ5(s)w(u(s))ds,

which implies

v′(t) ≤
[
λ1(t) + λ2(t)

∫ t

t0

λ3(s)ds + λ4(t)
∫ t

t0

λ5(s)ds
]
w(v(t)),

since v and w are nondecreasing, u ≤ w(u), and u(t) ≤ v(t) . Now, by integrating
the above inequality on [t0, t] and v(t0) = c, we have

(2.18) v(t) ≤ c +
∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ + λ4(s)
∫ s

t0

λ5(τ)dτ
)
w(v(s))ds.

Then, by the well-known Bihari-type inequality, (2.18) yields the estimate (2.17). ¤

Theorem 2.10. Let a, b, c, k, q, u, w ∈ C(R+), w(u) be nondecreasing in u such that
u ≤ w(u) and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to

fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution
x = 0 of (1.1) is hS with the increasing function h, and g in (1.2) satisfies

(2.19)
∫ t

t0

|g(s, y(s))|ds ≤ a(t)|y(t)|+ b(t)
∫ t

t0

k(s)w(|y(s)|)ds,
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and

(2.20) |h(t, y(t), T y(t))| ≤ c(t)(|y(t)|+ |Ty(t)|), |Ty(t)| ≤
∫ t

t0

q(s)w(|y(s)|)ds,

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞,
∫∞
t0

k(s)ds < ∞, and∫∞
t0

q(s)ds < ∞. Then, any solution y = 0 of (1.2) is bounded on [t0,∞) and it
satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτds + c(s)
∫ s

t0

q(τ)dτds
]
,

t0 ≤ t < b1, where c = c1|y0|h(t0)−1, W , W−1 are the same functions as in Lemma
1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτds

+ c(s)
∫ s

t0

q(τ)dτds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and (1.2),
respectively. By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, by Theorem 1.7, the solution z = 0 of (1.4) is hS.
Using the nonlinear variation of constants formula (2.6), the hS condition of x = 0
of (1.1), (2.19), and (2.20), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(
(a(s) + c(s))|y(s)|

+b(s)
∫ s

t0

k(τ)w(|y(τ)|)dτ + c(s)
∫ s

t0

q(τ)w(|y(τ)|)dτ
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)(a(s) + c(s))
|y(s)|
h(s)

ds

+
∫ t

t0

c2h(t)b(s)
∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτds

+
∫ t

t0

c2h(t)c(s)
∫ s

t0

q(τ)w(
|y(τ)|
h(τ)

)dτds.

Set u(t) = |y(t)||h(t)|−1 with c = c|y0|h(t0)−1. Then, an application of Lemma 2.9
yields
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|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + c(s)

+ b(s)
∫ s

t0

k(τ)dτds + c(s)
∫ s

t0

q(τ)dτds
]
,

where t0 ≤ t < b1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on
[t0,∞), and so the proof is complete. ¤

Remark 2.11. Letting c(t) = 0 and b(t) = a(t) in Theorem 2.10, we obtain the
similar result as that of Theorem 3.3 in [11].
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