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BOUNDEDNESS IN THE PERTURBED DIFFERENTIAL
SYSTEMS

Yoon Hoe Goo

Abstract. Alexseev’s formula generalizes the variation of constants formula and
permits the study of a nonlinear perturbation of a system with certain stability
properties. In recent years M. Pinto introduced the notion of h-stability. S.K. Choi
et al. investigated h-stability for the nonlinear differential systems using the notion
of t∞-similarity. Applying these two notions, we study bounds for solutions of the
perturbed differential systems.

1. Introduction

Integral inequalities play a vital role in the study of boundedness and other qual-
itative properties of solutions of differential equations. The behavior of solutions of
a perturbed system is determined in terms of the behavior of solutions of an unper-
turbed system. There are three useful methods for showing the qualitative behavior
of the solutions of perturbed nonlinear system : the use of integral inequalities, the
method of variation of constants formula, and Lyapunov’s second method.

Pinto [11, 12] introduced the notion of h-stability (hS) which is an important
extension of exponential asymptotic stability. He introduced hS with the intention
of obtaining results about stability for a weakly stable system (at least, weaker
than those given exponential asymptotic stability) under some perturbations. That
is, Pinto extended the study of exponential asymptyotic stability to a variety of
reasonable systems called h-systems.

The aim of this paper is to obtain some results on boundedness of the perturbed
differential systems under suitable conditions on perturbed term. To do this, we
need some integral inequalities.
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2. Preliminaries

We are interested in the relations of the unperturbed system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

and the solutions of the perturbed systems

x′(t) = f(t, x) + g(t, x), x(t0) = x0,(2.2)

and

y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,(2.3)

Here x,y,f and g are elements of Rn, an n-dimensional real Euclidean space.
We assume that f, g ∈ C(R+×Rn,Rn), R+ = [0,∞), and that f is continuously

differentiable with respect to the components of x on R+ × Rn, f(t, 0) = 0 for all
t ∈ R+. The symbol | · | will be used to denote arbitrary vector norm in Rn

Let x(t, t0, x0) denote the unique solutions of (2.1)and (2.2), satisfying the initial
conditions x(t0, t0, x0) = x0, and y(t0, t0, y0) = y0,existing on [t0,∞), respectively.
Then we can consider the associated variational systems around the zero solution of
(2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.4)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.5)

Here, fx(t, x) is the matrix whose element in the ith row, jth column is the partial
derivative of the ith component of f with respect to the jth component of x. The
fundamental matrix Φ(t, t0, x0) of (2.5) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.4).
We recall some notions of h-stability [11].

Definition 2.1. The system (2.1)(the zero solution x = 0 of (2.1)) is called an
h-system if there exist a constant c ≥ 1, and a positive continuous function h on R+

such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough(here h(t)−1 = 1
h(t)).
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Definition 2.2. The system (2.1) (the zero solution x = 0 of (2.1)) is called h-
stable(hS) if there exists δ > 0 such that (2.1) is an h-system for |x0| ≤ δ and h is
bounded.

Let M denote the set of all n×n continuous matrices A(t) defined on R+ and N
be the subset of M consisting of those nonsingular matrices S(t) that are of class C1

with the property that S(t) and S−1(t) are bounded. The notion of t∞-similarity in
M was introduced by Conti [6].

Definition 2.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if there
exists an n× n matrix F (t) absolutely integrable over R+, i.e.,

∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(2.6)

for some S(t) ∈ N .

We give some related properties that we need in the sequal.

Lemma 2.4 ([12]). The linear system

x′ = A(t)x, x(t0) = x0,(2.7)

where A(t) is an n × n continuous matrix, is an h-system(respectively h-stable) if
and only if there exist c ≥ 1 and a positive continuous(repectively bounded) function
h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(2.8)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (2.7).

The following is a generalization to nonlinear system of the variation of constants
formula due to Alekseev [1].

Lemma 2.5. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and
(2.2), respectively. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.6 ([3]). If the zero solution of (2.1) is hS, then the zero solution of
(2.2) is hS.
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Theorem 2.7 ([4]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥
t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (2.2) is hS,
then the solution z = 0 of (2.3) is hS.

Lemma 2.8 ([9]). (Bihari-type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c +
∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u

u0

ds

w(s)
, W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ(s)ds ∈ domW−1
}

.

3. Main Results

In this section, we investigate bounds for the nonlinear differential systems.
We need the lemma to prove the following theorem.

Lemma 3.1. Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nondecreasing
in u ,u ≤ w(u) . Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

λ1(s)w(u(s))ds +
∫ t

t0

λ2(s)(
∫ s

t0

λ3(τ)u(τ)dτ)ds, 0 ≤ t0 ≤ t.

Then

(3.1) u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u

u0

ds

w(s)
, u > 0, u0 > 0, W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds ∈ domW−1
}

.

Proof. Define a function v(t) by the right member of the above inequality . Then

v′(t) = λ1(t)w(u(t)) + λ2(t)
∫ t

t0

λ3(s)u(s)ds, v(t0) = c, u(t) ≤ v(t),
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which implies

(3.2)

v′(t) ≤ λ1(t)w(v(t)) + λ2(t)
∫ t

t0

λ3(s)u(s)ds

≤ λ1(t)w(v(t)) + λ2(t)
∫ t

t0

λ3(s)dsw(v(t))

≤ [λ1(t) + λ2(t)
∫ t

t0

λ3(s)ds]w(v(t)),

since v and w are nondecreasing . Now, by integrating the above inequality on [t0, t],
we have

(3.3) v(t) ≤ v(t0) +
∫ t

t0

[λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ ]w(v(s))ds.

It follows from Lemma 2.8 that (3.2) yields the estimate (3.1). ¤

Theorem 3.2. Let a, k, u, w ∈ C(R+), w(u) be nondecreasing in u ,u ≤ w(u) and
1
vw(u) ≤ w(u

v ) for some v > 0. Suppose that the solution x = 0 of (2.1) is hS with
a nondecreasing function h and the perturbed term g in (2.2) satisfies

|Φ(t, s, y(τ))g(t, y(τ))| ≤ a(s)(w(|y(τ)|) +
∫ s

t0

k(τ)|y(τ)|dτ), t ≥ t0 ≥ 0,

where
∫ ∞

t0

a(s)ds < ∞ and
∫ ∞

t0

k(s)ds < ∞. Then any solution y(t) = y(t, t0, y0)

of (2.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

a(s)(1 +
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.8 and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

a(s)(1 +
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Applying Lemma 2.5 and the increasing property of the function h, we
obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))g(s, y(s))|ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

a(s)
[
w(|y(s)|) +

∫ s

t0

k(τ)|y(τ)|dτ
]
ds
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≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

a(s)h(t)w(
|y(s)|
h(s)

)ds

+
∫ t

t0

a(s)
∫ s

t0

h(t)k(τ)
|y(τ)|
h(τ)

dτds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 3.1, we have

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

a(s)(1 +
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. The above estimation implies the boundedness of y(t), and
the proof is complete. ¤
Remark 3.3. Letting k(t) = 0 in Theorem 3.1, we obtain the same result as that
of Theorem 3.1 in [8].

Also, we examine the bounded property for the perturbed system

(3.4) y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0.

Theorem 3.4. Let a, b, k, u, w ∈ C(R+), w(u) be nondecreasing in u ,u ≤ w(u) and
1
vw(u) ≤ w(u

v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (2.1) is
hS with the increasing function h, and g in (3.4) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ a(s)w(|y(s)|) + b(s)
∫ s

t0

k(τ)|y(τ)|dτ,

where
∫ ∞

t0

a(s)ds < ∞,
∫ ∞

t0

b(s)ds < ∞, and
∫ ∞

t0

k(s)ds < ∞. Then, any solution

y(t) = y(t, t0, y0) of (3.4) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,

where W , W−1 are the same functions as in Lemma 2.8 and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (3.4),
respectively. By Theorem 2.6, since the solution x = 0 of (2.1) is hS, the solution
v = 0 of (2.2) is hS. Therefore, by Theorem 2.7, the solution z = 0 of (2.3) is hS.
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Using two Lemma 2.4 and 2.5, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+
∫ t

t0

c2h(t)b(s)
∫ s

t0

k(τ)
|y(τ)|
h(τ)

dτds.

since h is increasing. Set u(t) = |y(t)|h(t)−1. Now an application of Lemma 3.1
yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. The above estimation yields the desired result since the
function h is bounded, and the theorem is proved. ¤

Remark 3.5. Letting k(t) = 0 in Theorem 3.2, we obtain the same result as that
of Theorem 3.2 in [8].

We need the lemma to prove the following theorem.

Lemma 3.6. Let u, p, q, w, r ∈ C(R+), w ∈ C((0,∞)) and w(u) be nondecreasing
in u and u ≤ w(u). Suppose that for some c ≥ 0,

(3.5) u(t) ≤ c +
∫ t

t0

(
p(s)

∫ s

t0

(
q(τ)w(u(τ)) + v(τ)

∫ τ

t0

r(a)u(a)da
)
dτ

)
ds, t ≥ t0.

Then
(3.6)

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
p(s)

∫ s

t0

(
q(τ) + v(τ)

∫ τ

t0

r(a)da
)
dτ

)
ds

]
, t0 ≤ t < b1,

where W (u) =
∫ u

u0

ds

w(s)
, W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(
p(s)

∫ s

t0

(
q(τ) + v(τ)

∫ τ

t0

r(a)da
)
dτ

)
ds ∈ domW−1

}
.

Proof. Setting z(t) = c +
∫ t

t0

(p(s)
∫ s

t0

(q(τ)w(u(τ)) + v(τ)
∫ τ

t0

r(a)u(a)da)dτ)ds, we

have z(t0) = c and
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(3.7)

z′(t) = p(t)
∫ t

t0

(
q(τ)w(u(τ)) + v(τ)

∫ τ

t0

r(a)u(a)da
)
dτ

≤ p(t)
∫ t

t0

(
q(τ) + v(τ)

∫ τ

t0

r(a)da
)
w(u(τ))dτ

≤
[
p(t)

∫ t

t0

(
q(τ) + v(τ)

∫ τ

t0

r(a)da
)
dτ

]
w(z(t)), t ≥ t0,

since z(t) and w(u) are nondecreasing and u(t) ≤ z(t). Therefore, by integrating on
[t0, t], the function z satisfies

(3.8) z(t) ≤ c +
∫ t

t0

(
p(s)

∫ s

t0

(
q(τ) + v(τ)

∫ τ

t0

r(a)da
)
dτw(z(s))

)
ds.

It follows from Lemma 2.8 that (3.8) yields the estimate (3.6). ¤

Theorem 3.7. Let w ∈ C(R+), w(u) be nondeacreasing in u, u ≤ w(u) , and
1
vw(u) ≤ w(u

v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution x = 0 of (2.1)is
an h-system with a positive continuous function h and g in (3.4) satisfies

(3.9) |g(t, y)| ≤ a(t)(w(|y(t)|) +
∫ t

t0

k(s)|y(s)|ds), t ≥ t0, y ∈ Rn

where a : R+ → R+ is continuous with
∫ ∞

t0

1
h(s)

∫ s

t0

(a(τ)
(
h(τ) +

∫ τ

t0

h(r)k(r)dr
)
dτds < ∞,

for all t0 ≥ 0, then any solution y(t) = y(t, t0, y0) of (3.4) satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

c2

h(s)

∫ s

t0

a(τ)
(
h(τ) +

∫ τ

t0

h(r)k(r)dr
)
dτds

]
,

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 2.8 and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

c2

h(s)

∫ s

t0

a(τ)
(
h(τ)+

∫ τ

t0

h(r)k(r)dr
)
dτds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (3.4),
respectively. By Theorem 2.6, since the solution x = 0 of (2.1) is a h-system, the
solution v = 0 of (2.2) is a h-system. Therefore, by Theorem 2.7, the solution z = 0
of (2.3) is a h-system. Applying Lemma 2.5 and (3.9) , we have
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|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2
h(t)
h(s)

(
∫ s

t0

h(τ)a(τ)w(
|y(τ)|
h(τ)

)

+
∫ s

t0

a(τ)
∫ τ

t0

h(r)k(r)
|y(r)|
h(r)

dr)dτds.

Using Lemma 3.6 with u(t) = |y(t)|h(t)−1, we obtain

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

c2

h(s)

∫ s

t0

a(τ)
(
h(τ) +

∫ τ

t0

h(r)k(r)dr
)
dτds

]
,

t0 ≤ t < b1, where c = c1|y0|h(t0)−1. Hence, the proof is complete. ¤

Remark 3.8. Letting k(s) = 0 in Theorem 3.4, we obtain the same result as that
of Theorem 3.5 in [8].
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