• 제목/요약/키워드: p-MOSFETs

검색결과 82건 처리시간 0.023초

Strained-SOI(sSOI) n-/p-MOSFET에서 캐리어 이동도 증가 (Carrier Mobility Enhancement in Strained-Si-on-Insulator (sSOI) n-/p-MOSFETs)

  • 김관수;정명호;최철종;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.73-74
    • /
    • 2007
  • We fabricated strained-SOI(sSOI) n-/p-MOSFETs and investigated the electron/hole mobility characteristics. The subthreshold characteristics of sSOI MOSFETs were similar to those of conventional SOI MOSFET. However, The electron mobility of sSOI nMOSFETs was larger than that of the conventional SOI nMOSFETs. These mobility enhancement effects are attributed to the subband modulation of silicon conduction band.

  • PDF

Sub-micron 규모의 메몰 채널(buried-channel)P-MOSFETs에서의 핫-캐리어 현상 (Hot-carrier effects in sub-micron scaled buried-channel P-MOSFETs)

  • 정윤호;김종환;노병규;오환술;조용범
    • 전자공학회논문지A
    • /
    • 제33A권10호
    • /
    • pp.130-138
    • /
    • 1996
  • The size of a device needs to scale down to increase its integrity and speed. As the size of the device is reduced, the hot-carrier degradation that severely effects on device reliabilty is concerned. In this paper, sub-micron buried-channel P-MOSFETs were fabircated, and the hot-carrier effects were invetigated. Also the hot-carrier effect in the buired-channel P-MOSFETs and the surface-channel P-MOSFETs were compared with simulation programs using SUPREM-4 and MINIMOS-4. This paper showed that the electric characteristics of sub-micron P-MOSFET are different from those of N-MOSFET. Also it showed that the punchthrough voltage ( $V_{pt}$ ) was abruptly drop after applying the stress and became almost 0V when the channel lengths were shorter than 0.6.mu.m. The lower punchthrough voltage causes the device to operte poorly by the deterioration of cut-off characteries in the switching mode. We can conclude that the buried channel P-MOSFET for CMOS circuits has a limit of the channel length to be around 0.6.mu.m.

  • PDF

Some Device Design Considerations to Enhance the Performance of DG-MOSFETs

  • Mohapatra, S.K.;Pradhan, K.P.;Sahu, P.K.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권6호
    • /
    • pp.291-294
    • /
    • 2013
  • When subjected to a change in dimensions, the device performance decreases. Multi-gate SOI devices, viz. the Double Gate MOSFET (DG-MOSFET), are expected to make inroads into integrated circuit applications previously dominated exclusively by planar MOSFETs. The primary focus of attention is how channel engineering (i.e. Graded Channel (GC)) and gate engineering (i.e. Dual Insulator (DI)) as gate oxide) creates an effect on the device performance, specifically, leakage current ($I_{off}$), on current ($I_{on}$), and DIBL. This study examines the performance of the devices, by virtue of a simulation analysis, in conjunction with N-channel DG-MOSFETs. The important parameters for improvement in circuit speed and power consumption are discussed. From the analysis, DG-DI MOSFET is the most suitable candidate for high speed switching application, simultaneously providing better performance as an amplifier.

Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications

  • Mheen, Bong-Ki;Song, Young-Joo;Kang, Jin-Young;Hong, Song-Cheol
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.439-445
    • /
    • 2005
  • We introduce a strained-SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si-cap layers in n-channel and p-channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high-electron-mobility Si surface channel in nMOSFETs and a compressively strained high-hole-mobility $Si_{0.8}Ge_{0.2}$ buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate-leakage levels. Unlike the conventional strained-Si CMOS employing a relatively thick (typically > 2 ${\mu}m$) $Si_xGe_{1-x}$ relaxed buffer layer, the strained-SiGe CMOS with a very thin (20 nm) $Si_{0.8}Ge_{0.2}$ layer in this study showed a negligible self-heating problem. Consequently, the proposed strained-SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.

  • PDF

P-채널 MOSFET에서 게이트와 기판 전류의 시간에 따른 복원 특성 (Restoration Characteristics along to Time of the Gate and Substrate Current in p-channel MOSFETS)

  • 조상운;장원수;배지철;이용재
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.1101-1104
    • /
    • 2003
  • In this paper, we analyzed the gate current and substrate current by the hot carrier effects and restoration phenomenon of characteristics by time in the p-channel MOSFETs. The Stress voltage condition is a voltage in maximum gate current and time is 3s, 10s, 30s, l00s, 1000s, 2000s and 3000s. As results of analysis, the gate current and substrate current were decreased by stress time, and the restoration time of characteristics were shown the results that were decreased by the exponential times.

  • PDF

Monte Carlo Simulation Study: the effects of double-patterning versus single-patterning on the line-edge-roughness (LER) in FDSOI Tri-gate MOSFETs

  • Park, In Jun;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권5호
    • /
    • pp.511-515
    • /
    • 2013
  • A Monte Carlo (MC) simulation study has been done in order to investigate the effects of line-edge-roughness (LER) induced by either 1P1E (single-patterning and single-etching) or 2P2E (double-patterning and double-etching) on fully-depleted silicon-on-insulator (FDSOI) tri-gate metal-oxide-semiconductor field-effect transistors (MOSFETs). Three parameters for characterizing the LER profile [i.e., root-mean square deviation (${\sigma}$), correlation length (${\zeta}$), and fractal dimension (D)] are extracted from the image-processed scanning electron microscopy (SEM) image for each photolithography method. It is experimentally verified that two parameters (i.e., ${\sigma}$ and D) are almost the same in each case, but the correlation length in the 2P2E case is longer than that in the 1P1E case. The 2P2E-LER-induced $V_TH$ variation in FDSOI tri-gate MOSFETs is smaller than the 1P1E-LER-induced $V_TH$ variation. The total random variation in $V_TH$, however, is very dependent on the other major random variation sources, such as random dopant fluctuation (RDF) and work-function variation (WFV).

Trap-related Electrical Properties of GaN MOSFETs Through TCAD Simulation

  • Doh, Seung-Hyun;Hahm, Sung-Ho
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.150-155
    • /
    • 2018
  • Three different structures of GaN MOSFETs with trap distributions, trap levels, and densities were simulated, and its results were analyzed. Two of them are Schottky barrier MOSFETs(SB-MOSFETs): one with a p-type GaN body while the other is in the accumulation mode MOSFET with an undoped GaN body and regrown source/drain. The trap levels, distributions and densities were considered based on the measured or calculated properties. For the SB-MOSFET, the interface trap distribution affected the threshold voltage significantly, but had a relatively small influence on the subthreshold swing, while the bulk trap distribution affects the subthreshold swing more.

고온에서 accumulation-mode Pi-gate p-MOSFET 특성 (High Temperature Characterization of Accumulation-mode Pi-gate pMOSFETs)

  • 김진영;유종근;박종태
    • 대한전자공학회논문지SD
    • /
    • 제47권7호
    • /
    • pp.1-7
    • /
    • 2010
  • Fin 폭이 다른 accumulation-mode Pi-gate p-채널 MOSFET의 고온특성을 측정 분석하였다. 사용된 소자는 Fin 높이는 10nm 이며 폭은 30nm, 40nm, 50nm 의 3종류이다. 온도에 따라서 드레인 전류, 문턱전압, subthreshold swing, 유효이동도 및 누설 전류 특성을 측정하였다. 온도가 증가할수록 드레인 전류는 상온에서 보다 약간 증가하는 현상이 나타났다. 온도에 따른 문턱전압의 변화는 inversion-mode 소자 보다 작은 것으로 측정되었다. 유효이동도는 온도가 증가할수록 감소하였으나 Fin 폭이 감소할수록 이동도는 큰 것을 알 수 있었다.

Characteristics of Schottky Diode and Schottky Barrier Metal-Oxide-Semiconductor Field-Effect Transistors

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.69-76
    • /
    • 2005
  • Interface-trap density, lifetime and Schottky barrier height of erbium-silicided Schottky diode are evaluated using equivalent circuit method. The extracted interface trap density, lifetime and Schottky barrier height for hole are determined as $1.5{\times}10^{13} traps/cm^2$, 3.75 ms and 0.76 eV, respectively. The interface traps are efficiently cured by $N_2$ annealing. Based on the diode characteristics, various sizes of erbium- silicided/platinum-silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from 20 m to 35nm. The manufactured SB-MOSFETs show excellent drain induced barrier lowering (DIBL) characteristics due to the existence of Schottky barrier between source and channel. DIBL and subthreshold swing characteristics are compatible with the ultimate scaling limit of double gate MOSFETs which shows the possible application of SB-MOSFETs in nanoscale regime.

고전압 SiO2 절연층 nMOSFET n+ 및 p+ poly Si 게이트에서의 Positive Bias Temperature Instability 열화 메커니즘 분석 (Analysis of Positive Bias Temperature Instability Degradation Mechanism in n+ and p+ poly-Si Gates of High-Voltage SiO2 Dielectric nMOSFETs)

  • 윤여혁
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.180-186
    • /
    • 2023
  • 본 논문은 4세대 VNAND 공정으로 만들어진 고전압 SiO2 절연층 nMOSFET의 n+ 및 p+ poly-Si 게이트에서의 positive bias temperature instability(PBTI) 열화에 대해 비교하고 각각의 메커니즘에 대해 분석한다. 게이트 전극 물질의 차이로 인한 절연층의 전계 차이 때문에 n+/nMOSFET의 열화가 p+/nMOSFET의 열화보다 더 클 것이라는 예상과 다르게 오히려 p+/nMOSFET의 열화가 더 크게 측정되었다. 원인을 분석하기 위해 각각의 경우에 대해 interface state와 oxide charge를 각각 추출하였고, 캐리어 분리 기법으로 전하의 주입과 포획 메커니즘을 분석하였다. 그 결과, p+ poly-Si 게이트에 의한 정공 주입 및 포획이 p+/nMOSFET의 열화를 가속시킴을 확인하였다.