High Temperature Characterization of Accumulation-mode Pi-gate pMOSFETs

고온에서 accumulation-mode Pi-gate p-MOSFET 특성

  • Kim, Jin-Young (Department of Electronics Engineering, University of Incheon) ;
  • Yu, Chong-Gun (Department of Electronics Engineering, University of Incheon) ;
  • Park, Jong-Tae (Department of Electronics Engineering, University of Incheon)
  • Received : 2010.01.26
  • Accepted : 2010.06.28
  • Published : 2010.07.25

Abstract

The device performances of accumulation-mode Pi-gate pMOSFETs with different fin widths have been characterized at high operating temperatures. The device fin height is 10nm and fin widths are 30nm, 40nm, and 50nm. The variation of the drain current, threshold voltage, subthreshold swing, effective mobility, and leakage current have been investigated as a function of operating temperatures. The drain current at high temperature is slightly larger than at room temperature. The variation of the threshold voltage as a function of the operating temperature is smaller than that of the inversion-mode MOSFETs. The effective mobility is decreased with the increase of operating temperature. It is observed that the effective mobility is enhanced as the fin width decreases.

Fin 폭이 다른 accumulation-mode Pi-gate p-채널 MOSFET의 고온특성을 측정 분석하였다. 사용된 소자는 Fin 높이는 10nm 이며 폭은 30nm, 40nm, 50nm 의 3종류이다. 온도에 따라서 드레인 전류, 문턱전압, subthreshold swing, 유효이동도 및 누설 전류 특성을 측정하였다. 온도가 증가할수록 드레인 전류는 상온에서 보다 약간 증가하는 현상이 나타났다. 온도에 따른 문턱전압의 변화는 inversion-mode 소자 보다 작은 것으로 측정되었다. 유효이동도는 온도가 증가할수록 감소하였으나 Fin 폭이 감소할수록 이동도는 큰 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 인천대학교

References

  1. Navab Singh, Kavitha D. Buddharaju, S.K. Manas, A. Agarwal, Subhash C. Rustagi, G.Q. Lo, N. Balasubramanian, and Dim-Lee Kwong, "Si SiGe Nanowire devices by top-down technology and their applications," IEEE Trans.Electron Devices, vol.55, no.11, pp.3107-3118, 2008.
  2. Jong Tae Park, and Jean P. Colinge, "Multiple gate SOI MOSFETs :Device design guidelines," IEEE Trans. Electron Device, vol.49, no.12 pp.2222-2228, 2002. https://doi.org/10.1109/TED.2002.805634
  3. Jong Tae Park, J.P. Colinge, and C.H. Diaz, "Pi-Gate SOI MOSFET," IEEE Electron Device Lett., vol. 22, no. 8, pp. 405-406, 2001. https://doi.org/10.1109/55.936358
  4. Chi-Woo Lee, Dimitri Lederer, Aryan Afzalian, Ran Yan, Nima Dehdashti, Weize Xiong, and Jean-Pierre Colinge, "Comparison of contact resistance between accumulation-mode and inversion-mode multiple-gate FETs," Solid State Electronics, vol.52, pp. 1815-1820, 2008.
  5. M. M. Iqbal, Y. Hong, P. Grarg, F. Udrea, P. Migliorato, and S. Fonash, "The nano scale silicon accumulation-mode MOSFET-A comprehensive numerical study," IEEE Trans.Electron Device, vol.55, no.11, pp. 2946-2959, 2005.
  6. Ran Yan, Danny Lynch, Thibault Cayron, Dimitri Lederer, Aryan Afzalian, Chi-Woo Lee, Nima Dehdashti, and J.P. Colinge, "Sensitivity of Trigate MOSFET to random dopant induced threshold voltage fluctuations," Solid State Electronics, vol.52, pp. 1872-1876, 2008. https://doi.org/10.1016/j.sse.2008.06.061
  7. D. Flandre, A. Terao, P. Francis, B. Gentinne, and J.P. Colinge, "Demonstration of the potential of accumulation-mode MOS transistors on SOI substrate for high-temperature operation (150-300C)," IEEE Electron Device letter, vol.14, no. 1, pp.10-12, 1993. https://doi.org/10.1109/55.215084
  8. Jin-Woo Han, Choong-Ho, Lee, Dong Gun Park, and Yang-Kyu Choi, "High temperature characteristics of SOI and Body-tied FinFETs," 13차 한국 반도체 학술회의 pp. 147-148, 2006.
  9. Edmundo A. Gutierrez-D, and Rodrigo Rodriguez-T, "Temperature dependence of the 2D electron transport in Si accumulation layers,"Proceeding of 6th Int. Caribbean Conf. on Devices, Circuits and Systems, Mexico, Apr. pp.23-26, 2006.
  10. Sang-YunKim, Young Min Kim, Kwang-Ho Baek, Byung-Kil Choi, Kyoung-Rok Han, Ki-Heung Park, and Jong Ho Lee, "Temperature dependenceof substrate and drain-current in bulk FinFETs," IEEE Trans. Electron Devices, vol.54, no.5, pp.1259-1264, 2007. https://doi.org/10.1109/TED.2007.894605
  11. Jean P. Colinge, Liam Floyd, Aidan J. Quinn, Gareth Redmond, John C. Alderman, W. Xiong, C Rinn Cleavelin, T. Schulz, Klaus Schruefer, Gerhard Knoblinger, and Paul Patruno, " Temperature effects on Trigate SOI MOSFETs," IEEE Electron Device letter, vol.27, no.3, pp.172-174, 2006. https://doi.org/10.1109/LED.2006.869941
  12. Ji-Song Lim, Scott E. Thompson, and Jerry G. Fossum, "Comparison of threshold voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs," IEEE Electron Device Lett., vol. 25 no. 11, pp.731-733, 2004. https://doi.org/10.1109/LED.2004.837581
  13. J. Frei, C. Johns, A. Vazquez, W. Xiong, C. R. Cleavelin, T. Schulz, N. Chaudhary, G. Gebara, J.R. Zaman, M. Gostkowski, K. Mathew, and J.P. Colinge,"Body effects in tri- and Pi- gate SOI MOSFETs," IEEE Electron Device letter, vol.25, no. 12, pp.813-815, 2004. https://doi.org/10.1109/LED.2004.839223
  14. Momose HS, Ohguro T, Kojima K, Nakamura S, Toyoshima Y.,"110 GHz cutoff frequency of ultra-thin gate oxide p-MOSFETs on (1 1 0) surface-oriented Si substrate," Symp. VLSI Tech Dig., pp.156-157, 2002.
  15. Yuri Houk, Benjamin Iniguez, Denis Flander, and Alexei Nazarov, "An analytical accumulation mode SOI pMOSFET model for high temperature analog applications," Semiconductor Physics, Quantum Electronics & Optoelectronics, vol. 9, no. 1, pp.43-54, 2006.
  16. A. Burenkov, and J. Lorenz, "Corner effect in double and triple gate FinFETs," Proc. of ESSDERC, pp. 135-138, 2003.