• Title/Summary/Keyword: fractional integral

Search Result 178, Processing Time 0.02 seconds

AN INVESTIGATION ON THE EXISTENCE AND UNIQUENESS ANALYSIS OF THE FRACTIONAL NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.237-249
    • /
    • 2023
  • In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations are investigated. An example is given to illustrate the main results.

ANALYSIS OF HILFER FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Saif Aldeen M. Jameel;Saja Abdul Rahman;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.259-273
    • /
    • 2024
  • In this manuscript, we study the sufficient conditions for existence and uniqueness results of solutions of impulsive Hilfer fractional Volterra-Fredholm integro-differential equations with integral boundary conditions. Fractional calculus and Banach contraction theorem used to prove the uniqueness of results. Moreover, we also establish Hyers-Ulam stability for this problem. An example is also presented at the end.

NOTE ON NEWTON-TYPE INEQUALITIES INVOLVING TEMPERED FRACTIONAL INTEGRALS

  • Fatih Hezenci;Huseyin Budak
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.349-364
    • /
    • 2024
  • We propose a new method of investigation of an integral equality associated with tempered fractional integrals. In addition to this, several Newton-type inequalities are considered for differentiable convex functions by taking the modulus of the newly established identity. Moreover, we establish some Newton-type inequalities with the help of Hölder and power-mean inequality. Furthermore, several new results are presented by using special choices of obtained inequalities.

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • Krishnarajulu, Krishnaveni;Krithivasan, Kannan;Sevugan, Raja Balachandar
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.869-878
    • /
    • 2016
  • This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.

Conformable solution of fractional vibration problem of plate subjected to in-plane loads

  • Fadodun, Odunayo O.;Malomo, Babafemi O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.347-354
    • /
    • 2019
  • This study provides an approximate analytical solution to the fractional vibration problem of thin plate governing anomalous motion of plate subjected to in-plane loads. The method of variable separable is employed to transform the fractional partial differential equations under consideration into a fractional ordinary differential equation in temporal variable and a bi-harmonic plate equation in spatial variable. The technique of conformable fractional derivative is utilized to solve the resulting fractional differential equation and the approach of finite sine integral transform method is used to solve the accompanying bi-harmonic plate equation. The deflection field which measures the transverse displacement of the plate is expressed in terms of product of Bessel and trigonometric functions via the temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem of thin plate in literature. This work shows that conformable fractional derivative is an efficient mathematical tool for tracking analytical solution of fractional partial differential equation governing anomalous vibration of thin plates.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF

No-Arbitrage Interest Rate Models Under the Fractional Brownian Motion (Fractional Brownian Motion을 이용한 이자율모형)

  • Rhee, Joon-Hee
    • The Korean Journal of Financial Management
    • /
    • v.25 no.1
    • /
    • pp.85-108
    • /
    • 2008
  • In this paper, the fBm interest rate theory is investigated by using Wick integral. The well-known Affine, Quadratic and HJM are derived from fBm framework, respectively. We obtain new theoretical results, and zero coupon bond pricing formula from newly obtained probability measure.

  • PDF

Fractional Integrals and Generalized Olsen Inequalities

  • Gunawan, Hendra;Eridani, Eridani
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Let $T_{\rho}$ be the generalized fractional integral operator associated to a function ${\rho}:(0,{\infty}){\rightarrow}(0,{\infty})$, as defined in [16]. For a function W on $\mathbb{R}^n$, we shall be interested in the boundedness of the multiplication operator $f{\mapsto}W{\cdot}T_{\rho}f$ on generalized Morrey spaces. Under some assumptions on ${\rho}$, we obtain an inequality for $W{\cdot}T_{\rho}$, which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.

FRACTIONAL CALCULUS FORMULAS INVOLVING $\bar{H}$-FUNCTION AND SRIVASTAVA POLYNOMIALS

  • Kumar, Dinesh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.827-844
    • /
    • 2016
  • Here, in this paper, we aim at establishing some new unified integral and differential formulas associated with the $\bar{H}$-function. Each of these formula involves a product of the $\bar{H}$-function and Srivastava polynomials with essentially arbitrary coefficients and the results are obtained in terms of two variables $\bar{H}$-function. By assigning suitably special values to these coefficients, the main results can be reduced to the corresponding integral formulas involving the classical orthogonal polynomials including, for example, Hermite, Jacobi, Legendre and Laguerre polynomials. Furthermore, the $\bar{H}$-function occurring in each of main results can be reduced, under various special cases.

CERTAIN IMAGE FORMULAS OF (p, 𝜈)-EXTENDED GAUSS' HYPERGEOMETRIC FUNCTION AND RELATED JACOBI TRANSFORMS

  • Chopra, Purnima;Gupta, Mamta;Modi, Kanak
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1055-1072
    • /
    • 2022
  • Our aim is to establish certain image formulas of the (p, 𝜈)-extended Gauss' hypergeometric function Fp,𝜈(a, b; c; z) by using Saigo's hypergeometric fractional calculus (integral and differential) operators. Corresponding assertions for the classical Riemann-Liouville(R-L) and Erdélyi-Kober(E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, 𝜈)-extended Gauss's hypergeometric function Fp,𝜈(a, b; c; z) and Fox-Wright function rΨs(z). We also established Jacobi and its particular assertions for the Gegenbauer and Legendre transforms of the (p, 𝜈)-extended Gauss' hypergeometric function Fp,𝜈(a, b; c; z).