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and Raja Balachandar Sevugan

Abstract. This paper presents an efficient fractional shifted Legendre
polynomial method to solve the fractional Volterra’s model for population

growth model. The fractional derivatives are described based on the

Caputo sense by using Riemann-Liouville fractional integral operator.
The theoretical analysis, such as convergence analysis and error bound

for the proposed technique has been demonstrated. In applications, the

reliability of the technique is demonstrated by the error function based
on the accuracy of the approximate solution. The numerical applications

have provided the efficiency of the method with different coefficients of

the population growth model. Finally, the obtained results reveal that
the proposed technique is very convenient and quite accurate to such

considered problems.

1. Introduction

Fractional calculus has been applied in physics in recent years, although it
has a long history of mathematics. One possible explanation of such unpopu-
larity could be the existence of multiple nonequivalent definitions of fractional
derivatives [2]. Also, another difficulty of these definitions is that the fractional
derivatives have no obvious geometrical interpretation in consequence of their
nonlocal character [3]. However, during the last 10 years, fractional calculus
starts to attract much more attention of physicists and mathematicians. It was
found that various, especially interdisciplinary applications can be elegantly
modeled with the help of the fractional derivatives. For example, the fractional
derivatives could have modeled the nonlinear oscillation of earthquake [6]. The
fluid-dynamic models with fractional derivatives [10], [11] can eliminate the
deficiency arising from the assumption of continuum traffic flow and differen-
tial equations with fractional order have recently proved to be valuable tools
for the modeling of many physical phenomena [2], [9]. Mainardi [9] discussed
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the applications of fractional calculus in statistical mechanics and continuum.
Nowadays fractional differential equations have proved to be valuable tools in
the modeling of physical phenomena [1], [2], [4], [5], [13], [15], [17]. Many
researchers [2], [16] have proved the existence and uniqueness of solutions to
different types of the fractional differential equations.

The population growth [20] is characterized by the nonlinear fractional
Volterra integro-differential equation

(1)

dαy

dtα
= ay − by2 − cy

∫ t

0

y(s)ds,

y(0) = β, 0 < α ≤ 1,

where y(t) is the scaled population of identical individuals, t denotes the time,
α is a constant describing the order of time-fractional derivative, a > 0 is the
birth rate coefficient, b > 0 is the crowing coefficient, and c > 0 denotes the
essential behavior of the population evolution before its level falls to zero in the
long run is the toxicity coefficient as defined in [23], c/(ab) is a non-dimensional
parameter. The last segment of Eq. (1) is a function integral representing the
“‘total metabolism”’ or total amount of toxins accumulated from time zero.
The individual death rate is proportional to this integral, and so the population
death rate due to toxicity must include a factor α. Since the system is closed,
the presence of toxic always causes the population level to fall to zero in the
long run. For more details about these investigations, we refer [7], [8], [20],
[23].

Several analytical and numerical methods have been proposed to solve the
population growth model Eq. (1). The fractional Volterra’s population model
has been solved by the Adomian decomposition method, Pade approximation
and the homotopy analysis method [12]. Moreover, various familiar methods
such as the Sinc and rational Legendre collocation method [14], the rational
Chebyshev and Hermite functions collocation approach [16], the second de-
rivative multistep methods [15], the hybrid function approximation [10], the
homotopy-Pade method [11], the spectral functions methods [18], and the de-
rivative multistep methods [15] are used to obtain the numerical solutions of
classical Volterra’s population model. In this paper, we intend to extend the
application of fractional shifted Legendre polynomial method (FSLPM) to find
the approximate solution of the population growth model.

This paper is organized as follows. In Section 2, we present some necessary
definitions and mathematics preliminaries of the fractional calculus theory. In
Section 3, fractional order Legendre functions and its properties are discussed.
In Section 4, we discuss the convergence analysis and error analysis for the
proposed function approximation. In Section 5, we demonstrate the accuracy
of the proposed scheme by considering numerical examples. The conclusion is
given in Section 6.
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2. Preliminaries and notations

In this section, we give the definition of fractional-order integration and
fractional-order differentiation [2], [3].

Definition. A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R
if there exists a real number p > µ, such that f(x) = xpf1(x), where f1(x) ∈
C[0,∞]. Clearly Cµ < Cβ if β < µ.

Definition. The fractional derivative of f(x) in the Caputo sense is defined as

Dα
∗ f(x) = Jm−αDmf(x) =

1

Γ(m− α)

∫ x

0

(x− t)m−α−1
f (m)(t)dt

for m− 1 < α ≤ m, m ∈ N, x > 0, f ∈ Cm−1.
Caputo fractional derivative first computes an ordinary derivative followed

by a fractional integral to achieve the desired order of fractional derivative.
Some properties of the operator Dα, which are needed here, are as follows:
(2)
DαDβf(x) = Dα+βf(x),

DαC = 0, (C is a constant)

Dαxβ =

{
0 for β ∈ N0 and β < dαe,

Γ(β+1)
Γ(β+1−α)x

β−α for β∈N0 and β≥dαe or β /∈ N and β > bαc.

We use the ceiling function dαe to denote the smallest integer greater than or
equal to α, and the floor function bαc to denote the largest integer less than
or equal to α. Also N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. Similar to the
integer-order derivative, the Caputo fractional derivative is a linear operation:

(3) Dα

(
n∑
i=1

cifi(t)

)
=

n∑
i=1

ciD
αfi(t),

where {ci}ni=1 are constants.

3. Fractional shifted Legendre polynomials

In this section, we study another application of fractional shifted Legendre
polynomials, introduced by Kazem et al. [6].

3.1. Shifted Legendre polynomial

The Legendre polynomials are orthogonal functions defined over (−1, 1).
The shifted Legendre polynomials Pn(2t− 1) is obtained by changing the vari-
able z = 2t − 1 in the Legendre polynomial Pn(z) [22], where t ∈ (0, 1) is
generally denoted by Ln(t). The shifted Legendre polynomials are orthogonal
with respect to the weight function ws(t) = 1 in the interval (0, 1) with the

orthogonality property
∫ 1

0
Ln(t)Lm(t)dt = 1

2n+1δnm.
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Also it satisfies

(4)
Li+1 (t) =

(2i+ 1)(2t− 1)

i+ 1
Li (t)− i

i+ 1
Li−1 (t) , i = 1, 2, . . . ,

L0 (t) = 1 and L1 (t) = 2t− 1.

The analytic form of the shifted Legendre polynomial Ln(t) of degree n given

by Ln (t) =
∑n
i=0(−1)n+i (n+i)!

(n−i)!
ti

(i!)2 . Note that Ln (0) = (−1)n and Ln (1) = 1.

3.2. Fractional-order Legendre definition for FDE

For solving FDEs of order α, Rida and Yousef [19] have introduced a frac-
tional Legendre polynomials based method to solve FDEs . The other common
and efficient methods to solve the FDEs of order α is based on the series ex-
pansion of the form

∑N
i=0 cix

iα. In this way, Kazem et al. [6] has introduced
a fractional shifted Legendre polynomial method, replacing t by xα and it is
denoted by FLαi (x). The so called FLαi (x) are the particular solution of the
normalized eigen functions of the singular Sturm-Liouville problem

(5)
((
x− x1+α

)
FL

′α
i (x)

)′

+ α2i(i+ 1)xα−1FLαi (x) = 0, x ∈ (0, 1) .

Also it satisfies

FLαi (x) =
(2i+ 1)(2xα − 1)

i+ 1
FLαi (x)− i

i+ 1
FLαi−1 (x) , i = 1, 2, . . . ,

FLα0 (x) = 1 and FLα1 (x) = 2xα − 1.

The analytic form of FLαi (x) of degree iα given by

(6) FLαi (x) =

i∑
s=0

bs,ix
sα,

where bs,i = (−1)i+s(i+s)!
(i−s)!(s!)2 . And FLαi (0) = (−1)i and FLαi (1) = 1.

The FLFs are orthogonal with respect to the weight function w(x) = xα−1

in the interval (0, 1] with the orthogonality property

(7)

∫ 1

0

FLαn(x)FLαm(x)w(x)dx =
1

(2n+ 1)α
δnm.

3.3. Function approximation

A function y(x) defined over the interval (0, 1] may be expressed in terms of
fractional shifted Legendre polynomials as

(8) y(x) =

∞∑
i=0

ciFL
α
i (x),

where the coefficients ci are given by

ci = α(2i+ 1)

∫ 1

0

FLαi (x)y(x)w(x)dx, i = 0, 1, 2, . . . .
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In practice, only the first m terms of FLFs are considered. If the infinite
series in Eq. (8) is truncated, then it can be written as

(9) y(x) ' ym(t) =

m−1∑
i=0

ciFL
α
i (t) = CTFLα(t)

with C = [c0, c1, . . . , cm−1]T , FLα(t) = [FLα0 (t), FLα1 (t), . . . , FLαm−1(t)]T .

3.4. Description of the method

In order to solve Eq. (1), y(t) is replaced as given in Eq. (9) and Dαy(t),

y2(t) and y
∫ t

0
y(s)ds by the following expressions.

Dαy(t) '
m−1∑
i=0

ciD
αFLαi (t) = CTDαFLα(t),(10)

y2(t) '

(
m−1∑
i=0

ciFL
α
i (t)

)2

= ETFLα(t),(11)

y(t) =

∫ t

0

y(x)dx '
m−1∑
i=0

ciFL
α
i (t)

∫ t

0

m−1∑
i=0

ciFL
α
i (x)dx ' HTFLα(t),(12)

where CT , ET , HT are the unknown vectors in terms of ci’s.
By substituting Eqs (9)-(12) in Eq. (1) we have (CTDα − αCT + ET +

HT )FLα(t) = 0.
The required m nonlinear equations are generated by
(i) y(0) = β (one equation)

(ii) MT
∫ 1

0
FLα(t)FLαi (t)tα−1dt = 0, i = 0, 1, 2, . . . ,m− 2,

where MT = (CTDα−αCT +ET +HT ). The solution of the generated nonlin-
ear system leads to find the unknown vector C and the required approximate
solution y(t).

In case the exact solution to a problem is known, the accuracy and efficiency
of the new method based on maximum absolute error em defined as

em = max{|yexact(t)− ym(t)|}, a ≤ x ≤ b, 0 < t < τ.

4. Theoretical analysis

In this section, we will discuss the convergence analysis and error estimation
for the proposed technique.

Theorem 4.1 (Convergence Theorem). A continuous function y(t) with bound-
ed second derivative, say M , can be expressed as

∑∞
i=0 ciFL

α
i (t) and the trun-

cated series given in Eq. (9) converges towards the exact solution y(t).

Proof. Let y(t)=
∑m−1
i=0 ciFL

α
i (t), consider ci = α(2i+1)

∫ 1

0
y(t)FLαi (t)tα−1dt.

Here FLαi (t) = Pi(2t
α − 1), where Pi’s are Legendre polynomials in x and
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the fractional shifted Legendre polynomials are orthogonal with respect to the
weight function w(t) = tα−1in the interval (0, 1].

ci = α(2i+ 1)

∫ 1

0

y(2tα − 1)Pi(2t
α − 1)tα−1dt

=
1

2

∫ 1

−1

y(v)d[Pi+1(v)− Pi−1(v)]

=
1

2

∫ 1

−1

y
′′
(v)

[
Pi+2(v)− Pi(v)

2i+ 3
− Pi(v)− Pi−2(v)

2i− 1

]
dv.

Consider ∣∣∣∣12
∫ 1

−1

y
′′
(v)

[
Pi+2(v)− Pi(v)

2i+ 3
− Pi(v)− Pi−2(v)

2i− 1

]
dv

∣∣∣∣2
<

M2

(2i− 3)(2i− 1)2
<

M

(2i− 3)1/2(2i− 1)
.

Thus we get

|ci| <
M

(2i− 3)1/2(2i− 1)
.

Hence
∑∞
i=0 ci is absolutely convergent and thus the expansion of the func-

tion given in Eq. (9) converges uniformly [9]. �

Theorem 4.2 (Error bound). Let y(t) be a function defined on (0, 1] with
bounded second derivative say M . Then we have the following accuracy
estimation:

ε ≤
∞∑
i=m

M

(2i− 1)
√

(2i− 3)(2i+ 1)α
,

where ε =

(∫ 1

0

[∑∞
i=0 ciFL

α
i (t)−

∑m−1
i=0 ciFL

α
i (t)

]2
w(t)dt

) 1
2

.

Proof.

ε2 =

∫ 1

0

[ ∞∑
i=0

ciFL
α
i (t)−

m−1∑
i=0

ciFL
α
i (t)

]2

w(t)dt.

=

∫ 1

0

∞∑
i=m

c2i [FLαi (t)]
2
tα−1dt.

Hence,

ε ≤
∞∑
i=m

M

(2i− 1)
√

(2i− 3)(2i+ 1)α
.

�
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5. Application of FSLPM for fractional population growth model

In order to show the effectiveness of the FSLPM, we implement FSLPM to
the fractional population growth model with real coefficients for small k and
large k, k = c/ab.

Let y(t) = c0 +c1(2tα−1)+c2(6t2α−6tα+1)+c3(20t3α−30t2α+12tα−1)+
c4(70t4α − 140t3α + 90t2α − 20tα + 1) be the approximate solution of Eq. (1).

Case (i) Setting α = 1, k = 0.1 (i.e., a = b = c = 10), β = 0.1; the
approximate solution of Eq. (1) is y(t) = 0.1 + 0.9t + 3.55t2 + 6.31666667t3 −
5.5375t4−63.70916667t5−156.0804167t6−18.47323411t7+1056.288569t8 which
is the same as in [21].

Case (ii) Setting α = 0.5, k = 0.1 (i.e., a = b = c = 10), β = 0.1, y(t) =
0.1 + 1.01554t1/2 + 7.2t + 35.4964t3/2 + 90.422t2 − 321.158t5/2 − 5346.32t3 −
32307.8t7/2 − 82694.8t4, is the same as in [21].

Case (iii) For k = 1 (a = b = c = 1) with α = 1, y(t) = 0.1+0.09t+0.031t2 +
0.0010666t3 − 0.0032275t4 − 0.001238666t5 + 0.00068208t6 + 0.000057765t7 −
0.0000067618t8, is the same as in [21].

The numerical values of ymax for various values are given in Table 1 for
different values of k. To study the performance of FSLPM, we compare the nu-
merical solutions of Eq. (1) with other methods, reported in the literature, like
ADM, Hermite functions collocation method (HFC), Second derivative multi-
step method (SDMM) and Block-pulse function (BPF) method are presented
in Table 2 in terms of ymax with α = 1. We also present the FSLPM-Pade
approximants solutions for various α and k values in Figure 1 and Figure 2
respectively. We notice from the Figure 1 and Figure 2 that the solution falls
slowly when the value of α and k increases respectively. From both figures
and tables, it is shown that ymax decreases as k increases. It confirms that
the behaviour of a population depends on the fractional time parameter and k
values. The overall obtained outcome indicates that FSLPM is a powerful and
important tool for solving fractional population growth model.

Table 1. Comparison of methods and FSLPM with exact val-
ues for ymax

k ADM [12] HFC [16] SDMM [15] BPF[18] FSLPM Exact ymax

0.02 0.9038380533 0.92342704 0.92342714 0.9234271721 0.9234271721 0.9234271721
0.04 0.8612401770 0.87371998 0.87381998 0.8737199832 0.8737199832 0.8737199832
0.1 0.7651130834 0.76974149 0.76974140 0.7697414907 0.7697414907 0.7697414907
0.2 0.6579123080 0.65905038 0.65905037 0.6590503815 0.6590503815 0.6590503815
0.5 0.4852823482 0.48519030 0.48519029 0.4851902914 0.4851902914 0.4851902914

6. Conclusion

This paper develops an effective FSLPM for solving fractional population
growth model based on fractional order Legendre function. We have discussed
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Table 2. A comparison of FSLPM with exact values of ymax

for different fractional order

k α = 1/2 α = 3/4 α = 1 Exact ymax
0.02 2.92000000 1.49200000 0.922942037 0.92342717
0.04 2.01600000 1.24600000 0.873725344 0.87371998
0.1 1.23200000 0.94150000 0.765113089 0.76974149
0.2 0.81130000 0.71690000 0.659050432 0.65905038
0.5 0.44320000 0.45740000 0.485190290 0.48519030
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the fractional derivatives in the Caputo sense. Error analysis and convergence
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analysis have been demonstrated for our proposed method. The solution ob-
tained using the suggested method is in excellent agreement with the already
existing ones and show that this approach can solve the problem effectively.
Although we have only considered a model problem in this paper, the main
idea and the techniques used in this work are also applicable to many other
problems. The validity and applicability of the method have been verified by
considering a fractional population growth model problem.
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