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Abstract. In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli

theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive

problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations

are investigated. An example is given to illustrate the main results.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and inte-
gration to arbitrary noninteger order, so fractional differential equations have
wider application. Fractional integro-differential equations have gained con-
siderable importance; it can describe many phenomena in various fields of
science and engineering such as control, porous media, electrochemistry, vis-
coelasticity, and electromagnetic [10, 12, 13, 14, 15, 16, 17, 23, 26, 29].

In the recent years, there has been a significant development in fractional
calculus and fractional differential equations; see Kilbas et al. [24], Miller and
Ross [29], Podlubny [30], Baleanu et al. [3], and so forth. Research on the
solutions of fractional differential equations is very extensive, such as numerical
solutions, see El-Mesiry et al. [9] and Hashim et al. [18], mild solutions, see
Chang et al. [10] and Chen et al. [6], the existence and uniqueness of solutions
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for initial and boundary value problem, see [1, 2, 8, 11, 20, 21, 22, 25, 26, 27,
28, 31, 32, 34], and so on.

Recently, not instantaneous impulsive condition first time used by author’s
Hernandez and O’Regan [19] for the following problem of the form:


u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1] , i = 0, 1, · · · , N,
u(t) = gi(t, u(t)), t ∈ (ti, si] , i = 1, 2, · · · , N,
u(0) = x0.

Motivated by the previous results, we discuss in this paper the existence
and uniqueness of solutions for the following impulsive nonlinear fractional
Volterra-Fredholm integro-differential equation:

Dα
t y(t) = J2−α

t f
(
t, yρ(t,yt), A(yρ(t,yt)), B(yρ(t,yt))

)
, t ∈ (si, ti+1], (1.1)

y(t) = gi(t, y(t)), y′(t) = qi(t, y(t)), t ∈ (ti, si] , i = 1, 2, · · · , N, (1.2)

y(t) + u(y) = φ(t), y′(t) + v(y) = ϕ(t), t ∈ (−∞, 0], (1.3)

where Dα
t is Caputo fractional derivative of order α ∈ (1, 2] and J2−α is

Riemann-Liouville fractional integral. y′ denotes the derivative of y with re-
spect to t and operational interval J = [0, T ], 0 < T <∞. f : J ×Bh ×Bh →
X,u, v : X → X are given functions. Bh is an abstract phase space and
yt the element of Bh defined by yt(θ) = y(t + θ), θ ∈ (−∞, 0]. The terms
A
(
yρ(t,yt)

)
, B
(
yρ(t,yt)

)
are given by

A
(
yρ(t,yt)

)
=

∫ t

0
K1(t, s)

(
yρ(s,ys)

)
ds

and

B
(
yρ(t,yt)

)
=

∫ T

0
K2(t, s)

(
yρ(s,ys)

)
ds,

where K ∈ C (D,R+), is the set of all positive functions which are continu-

ous on D =
{

(t, s) ∈ R2 : 0 ≤ s ≤ t < T
}

and A∗ = supt∈[0,T ]

∫ t
0 K1(t, s)ds <

∞, B∗ = supt∈[0,T ]

∫ T
0 K2(t, s)ds < ∞. Here 0 = t0 = s0 < t1 ≤ s1 ≤ t2 <

· · · < tN ≤ sN ≤ tN+1 = T , are pre-fixed numbers, gi, qi ∈ C ((ti, si]×X;X)
for all i = 1, 2, · · · , N .

The rest of the paper is organized as follows. In Section 2, we give some
definitions and lemmas that will be useful to our main results. In Section 3,
we give two main results: the first result based on the Schauder’s fixed point
theorem and the second result based on the Banach contraction principle. In
Section 4, an example is presented to illustrate the main results.
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2. Preliminary

In this section, we introduce notations, definitions, and preliminary facts
that will be used in the remainder of this paper. Let (X, ‖ · ‖X) be a complex
Banach space of functions with the norm ‖y‖X = supt∈J{|y(t)| : y ∈ X}. For
infinite delay we use abstract phase space Bh details are as follow:

Assume that h : (−∞, 0]→ (0,∞) is a continuous functions with

l =

∫ 0

−∞
h(s)ds <∞, t ∈ (−∞, 0].

For any a > 0, we define B = {ψ : [−a, 0]→ X such that ψ(t) is bounded and
measurable}, and equipped the space B with the norm

‖ψ‖[−a,0] = sup
s∈[−a,0]

‖ψ(s)‖X , ∀ψ ∈ B.

Let us define

Bh=

{
ψ : (−∞, 0]→ X, s.t. for c > 0, ψ|[−c,0] ∈ B,

∫ 0

−∞
h(s)‖ψ‖[s,0]ds <∞

}
.

If Bh is endowed with the norm ‖ψ‖Bh =
∫ 0
−∞ h(s)‖ψ‖[s,0]ds, for all ψ ∈ Bh,

then it is clear that (Bh, ‖ · ‖Bh ) is a complete Banach space.

To treat the impulsive conditions, we consider the following setting

B′h := PC((−∞, T ];X), T <∞

is a Banach space of all such functions y : (−∞, T ]→ X, which are continuous
every where except for a finite number of points ti ∈ (0, T ), i = 1, 2, . . . , N , at
which y

(
t+i
)
and y

(
t−i
)
exists and endowed with the norm

‖y‖B′h = sup {‖y(s)‖X : s ∈ J}+ ‖φ‖Bh , y ∈ B′h,

where ‖ · ‖B′h to be a semi-norm in B′h.

For a function y ∈ B′h and i ∈ {0, 1, . . . , N}, we introduce the function
ȳi ∈ C ([ti, ti+1] ;X) given by

ȳi(t) =

{
y(t), for t ∈ (ti, ti+1] ,
y
(
t+i
)
, for t = ti,

and setting

B′′h := PC1((−∞, T ];X), T <∞
is a Banach space of all such functions y : (−∞, T ] → X, which are con-
tinuously differentiable every where except for a finite number of points ti ∈



240 Fawzi Muttar Ismaael

(0, T ), i = 1, 2, . . . , N , at which y′
(
t+i
)
and y′

(
t−i
)
exists and endowed with the

semi-norm

‖y‖B′′h = sup
t∈[0,T ]

{
‖y(s)‖X ,

∥∥y′(s)∥∥
X

}
+ ‖φ‖Bh , y ∈ B′′h.

For a function y ∈ B′′h and i ∈ {0, 1, . . . , N}, we introduce the function
ȳi ∈ C1 ([ti, ti+1] ;X) given by

ȳi(t) =

{
y′(t), for t ∈ (ti, ti+1] ,
y′
(
t+i
)
, for t = ti.

If function y : (−∞, T ] → X such that y ∈ B′′h then for all t ∈ [0, T ], the
following conditions hold:

(C1) yt ∈ Bh.

(C2) ‖y(t)‖X ≤ H ‖yt‖Bh .
(C3) ‖yt‖Bh ≤ K(t) sup {‖y(s)‖X : 0 ≤ s ≤ t}+M(t)‖φ‖Bh ,

where H > 0 is constant; K,M : [0,∞) → [0,∞),K(·) is continuous, M(·) is
locally bounded and K,M are independent of y(t).(

C4φ

)
The function t→ φt is well defined and continuous from the set

R
(
ρ−
)

= {ρ(s, ψ) : (s, ψ) ∈ [0, T ]×Bh}

into Bh and there exists a continuous and bounded function Jφ : < (ρ−) →
(0,∞) such that ‖φt‖Bh ≤ J

φ(t)‖φ‖Bh for every t ∈ < (ρ−).

Lemma 2.1. ([4, Lemma 3.6]) Let y : (−∞, T ] → X be a function such that
y ∈ B′′h with y0 = φ, y|Jk ∈ C

1 (Jk, X) and if (C4φ) hold. Then

‖ys‖Bh≤
(
Mb+J

φ
)
‖φ‖Bh+Kb sup {‖y(θ)‖X ; θ ∈ [0,max{0, s}]}, s ∈ R

(
ρ−
)
∪J,

where

Jφ = sup
t∈Ω(ρ−)

Jφ(t), Mb = sup
s∈[0,T ]

M(s) and Kb = sup
s∈[0,T ]

K(s).

Definition 2.2. Caputo’s derivative of order α > 0 for a function f : [a,∞)→
R is defined as

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a
(t− s)n−α−1f (n)(s)ds = aJ

n−α
t f (n)(t),

where a ≥ 0, n ∈ N . It is clear that derivative of constant function is zero.

Definition 2.3. The Riemann-Liouville fractional integral operator of order
α > 0, for a function f ∈ L1 (R+, X) is defined by

aJ
0
t f(t) = f(t), aJ

α
t f(t) =

1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, α > 0, t > 0,



Fractional nonlinear integro-differential equations 241

where a ≥ 0, n ∈ N and Γ(·) is the Euler gamma function.

Lemma 2.4. ([4]) For α > 0, solution of fractional differential equations with
lower limit not zero aJ

α
t D

α
t y(t) = y(t) + c0 + c1(t − a) + c2(t− a)2 + c3(t −

a)3 + · · ·+ cn−1(t− a)n−1 where ci ∈ R, i = 0, 1, · · · , n− 1, n = [α] + 1 and [α]
represent the integral part of the real number α.

Our following result is based Definition 2.1 in [19].

Definition 2.5. A function y : (−∞, T ] → X such that y ∈ B′′h is called
a solution of the problem (1.1)-(1.3) if y(0) = φ(0), y′(0) = ϕ(0), y(t) =
gj(t, y(t)), y′(t) = qj(t, y(t)) for t ∈ (tj , sj ] , j = 1, 2, · · · , N , and satisfying
the following integral equation

y(t) =



φ(0)− u(y) + (ϕ(0)− v(y))t

+
∫ t

0 (t− s)f
(
s, yρ(s,ys , Ayρ(s,ys), Byρ(s,ys)

)
ds, t ∈ [0, t1] ,

gi (si, y (si)) + qi (si, y (si)) t

+
∫ t
si

(t− s)f
(
s, yρ(s,ys), Ayρ(s,ys), Byρ(s,ys)

)
ds, t ∈ [si, ti+1]

for every i = 1, 2, · · · , N .

3. Main results

In this section, we state and prove our main results. To prove our results
we shall assume the function ρ : [0, T ] × Bh → (−∞, T ] is continuous and
φ, ϕ ∈ Bh. If y ∈ Bh we defined ȳ : (−∞, T ) → X as the extension of y to
(−∞, T ] such that ȳ(t) = φ. We defined ỹ : (−∞, T )→ X such that ỹ = y+x
where x : (−∞, T ) → X is the extension of φ ∈ Bh such that x(t) = φ(0)
for t ∈ [0, T ]. In additional if y′ ∈ Bh we defined ȳ′ : (−∞, T ) → X as the
extension of y′ to (−∞, T ] such that y′(t) = ϕ. We defined ỹ′ : (−∞, T )→ X
such that ỹ′ = y′ + x′ where x′ : (−∞, T ) → X is the extension of ϕ ∈ Bh

such that x′(t) = ϕ(0) for t ∈ [0, T ].

Now we introduce the following assumptions.

(H1) f : J ×Bh ×Bh ×Bh → X is jointly continuous function and there
exist positive constants Lf1, Lf1 and Lf3 such that

‖f(t, ψ1, ϕ1, χ1)− f(t, ψ2, ϕ2, χ2)‖X
≤ Lf1‖ψ1 − ψ2‖Bh + Lf2‖ϕ1 − ϕ2‖Bh

+ Lf3‖χ1 − χ2‖Bh , ∀ ψi, ϕi, χi ∈ Bh.
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(H2) f is continuous and there exist positive constants M1,M2 and M3 such
that

‖f(t, ψ, ϕ, χ)‖X ≤M1‖ψ‖Bh +M2‖ϕ‖Bh +M3‖χ‖Bh , ∀ψ,ϕ, χ ∈ Bh.

(H3) The functions u, v are continuous and there are positive constants
Lu, Lv such that

‖u(x)− u(y)‖X ≤ Lu‖x− y‖X
and

‖v(x)− v(y)‖X ≤ Lv‖x− y‖X
for all x, y ∈ X.

(H4) The functions u, v are continuous and there are positive constants
Mu,Mv such that

‖u(y)‖X ≤Mu‖y‖X ; ‖v(y)‖X ≤Mv‖y‖X , ∀x, y ∈ X.

(H5) The functions gi, qi are continuous and there are positive constants
Lgi , Lqi such that

‖gi(t, x)− gi(t, y)‖X ≤ Lgi‖x− y‖X
and

; ‖qi(t, x)− qi(t, y)‖X ≤ Lqi‖x− y‖X
for all x, y ∈ X, t ∈ (ti, si] and each i = 1, 2, · · · , N .

(H6) The functions gi, qi are continuous and there are positive constants
M5,M6 such that

‖gi(t, y)‖X ≤M5‖y‖X and ‖qi(t, y)‖X ≤M6‖y‖X
for all x, y ∈ X, t ∈ (ti, si] and each i = 1, 2, · · · , N .

Theorem 3.1. Assume the condition (H1) , (H3) and (H5) are satisfied and
constant

∆ = max
{

(Lu + TLv +Kb
T 2

2
(Lf1 + Lf2A

∗ + Lf3B
∗)),

(Lgi + TLqi +Kb
T 2

2
(Lf1 + Lf2A

∗ + Lf3B
∗))
}

< 1, for i = 1, · · · , N.

Then there exists a unique solution y(t) of the problem (1.1)-(1.3) on J .

Proof. Let φ̄ and ϕ̄ : (−∞, T )→ X be the extensions of φ and ϕ to (−∞, T ],

respectively, such that φ(t) = φ(0), ϕ(0) = ϕ(0) on J .
Consider the space B′′′h = {y ∈ B′′h : y(0) = φ(0), y′(0) = ϕ(0)} and y(t) =

φ(t), y′(t) = ϕ(t) for t ∈ (−∞, 0 ] endowed with the uniform convergence
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topology. Let us consider an operator P : B′′′h → B′′′h defined as Py(t) =
gi(t, ȳ(t)) for t ∈ (ti, si] and

Py(t) =



φ(0)− u(ȳ) + (ϕ(0)− v(ȳ))t

+
∫ t

0 (t− s)f
(
s, ȳρ(s,ȳs), Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)
ds, t ∈ [0, t1] ,

gi (si, ȳ (si)) + qi (si, ȳ (si)) t

+
∫ t
si

(t− s)f
(
s, ȳρ(s,ȳs), Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)
ds, t ∈ [si, ti+1] ,

(3.1)

where ȳ : (−∞, T ] → X is such that y(0) = φ, y′(0) = ϕ and ȳ = y on J .
Then it is obvious that P is well defined. Now, we show that the operator P
has a fixed point. Let y(t), y∗(t) ∈ B′′′h and t ∈ [0, t1], we have

‖Py − Py∗‖X ≤ ‖u(ȳ)− u (ȳ∗)‖X + T ‖v(ȳ)− v (ȳ∗)‖X

+

∫ t

0
(t− s)

∥∥∥f(s, ȳρ(s,ȳs), Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)
− f

(
s, ȳ∗ρ(s,ȳ∗s ), Aȳ

∗
ρ(s,ȳ∗s ), Bȳ

∗
ρ(s,ȳ∗s )

)∥∥∥
X
ds

≤
(
Lu + TLv +Kb

T 2

2
(Lf1 + Lf2A

∗ + Lf3B
∗)

)
‖y − y∗‖B′′′h .

For t ∈ [si, ti+1], we have

‖Py − Py∗‖X ≤‖gi (si, ȳ (si))− gi (si, ȳ
∗ (si))‖X

+ ‖qi (si, ȳ (si))− qi (si, ȳ
∗ (si))‖X T

+

∫ t

si

(t− s)
∥∥∥f(s, ȳρ(s,ȳs , Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)
− f

(
s, ȳ∗ρ(s,ȳ∗s ), Aȳ

∗
ρ(s,ȳ∗s ), Bȳ

∗
ρ(s,ȳ∗s )

)∥∥∥
X
ds

≤
(
Lgi + TLqi +Kb

T 2

2
(Lf1 + Lf2A

∗ + Lf3B
∗)

)
‖y − y∗‖B′′′h .

For t ∈ (tj , sj ], we get

‖Py − Py∗‖X ≤ Lgj ‖y − y
∗‖B′′′h , j = 1, 2, · · · , N.

Gathering above results, we obtain

‖Py − Py∗‖X ≤ ∆ ‖y − y∗‖B′′′h .

Since ∆ < 1, which implies that P is a contraction map and there exists a
unique fixed point which is the solution of problem (1.1)-(1.3) on J . This
completes the proof. �
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Theorem 3.2. Let the assumptions (H2) , (H4) and (H6) are satisfied. Then
the system (1.1)-(1.3) has at least one solution y(t) on J .

Proof. Consider the operator P : B′′′h → B′′′h , defined by (3.1) in Theorem
3.1. We shall show P has a fixed point in B′′′h . First, we shall show that P is
continuous, so we consider a sequence yn → y in B′′′h , then for [0, t1]

‖P (yn)− P (y)‖X ≤ ‖u (ȳn)− u(ȳ)‖X + T ‖v (ȳn)− v(ȳ)‖X

+

∫ t

0
(t− s)

∥∥∥f(s, ȳnρ(s,yns)
, Aȳnρ(s,yns)

, Bȳnρ(s,yns)

)
− f

(
s, ȳρ(s,ȳs), Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)∥∥∥
X
ds.

For t ∈ [si, ti+1], we have

‖P (yn)− P (y)‖X ≤ ‖gi (si, y
n (si))− gi (si, ȳ (si))‖X

+ T ‖qi (si, y
n (si))− qi (si, ȳ (si))‖X

+

∫ t

si

(t− s)
∥∥∥f(s, ȳnρ(s,ȳns ), Aȳ

n
ρ(s,ȳns ), Bȳ

n
ρ(s,ȳns )

)
− f

(
s, ȳρ(s,ȳs), Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)∥∥∥
X
ds.

Since f, u, v, gi and qi are continuous functions, we have

‖P (yn)− P (y)‖X → 0, as n→∞

which show that P is continuous. Let Br = {y ∈ B′′′h : ‖y‖X ≤ r} be a closed
bounded and convex subset of B′′′h . Now, it is easy to prove that P maps
bounded set into bounded set in Br. To do this we have for [0, t1]

‖P (y)(t)‖X ≤ ‖φ(0)‖+ ‖u(ȳ)‖+ T (‖ϕ(0)‖+ ‖v(ȳ)‖)

+

∫ t

0
(t− s)f

(
s, ȳρ(s,ȳs), Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)
ds

≤ ‖φ(0)‖+ Lur + T (‖ϕ(0)‖+ Lνr)

+
T 2

2
(M1 +M2A

∗ +M3B
∗) r∗.

For t ∈ [si, ti+1], we have

‖P (y)(t)‖X ≤ ‖gi (si, ȳ (si))‖X + T ‖qi (si, ȳ (si))‖X

+

∫ t

si

(t− s)
∥∥f (s, ȳρ(s,ȳs , Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)∥∥
X
ds

≤M5r + TM6r +
T 2

2
(M1 +M2A

∗ +M3B
∗) r∗,
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where r∗ =
(
Mb + Jφ

)
‖φ‖Bh +Kbr. Which implies that P maps bounded set

into bounded set in Br.
Next, we shall show that P maps bounded sets into equi-continuous sets in

Br. Let l1, l2 ∈ [0, t1] with l1 < l2, we have

‖(Py) (l2)− (Py) (l1)‖X ≤ (l2 − l1) (‖ϕ(0)‖+ ‖v(ȳ)‖)

+

∫ l1

0
(l2 − l1)

∥∥f (s, ȳρ(s,ȳs , Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)∥∥
X
ds

+

∫ l2

l1

(l2 − s)
∥∥f (s, ȳρ(s,ȳs), Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)∥∥
X
ds

≤ (l2 − l1) (‖ϕ(0)‖+Mvr)

+ (l2 − l1)T (M1 +M2A
∗ +M3B

∗) r∗

+
(l2 − l1)2

2
(M1 +M2A

∗ +M3B
∗) r∗.

Let l1, l2 ∈ (si, tk+1] with l1 < l2, k = 1, 2, · · · ,m. Then we have

‖(Py) (l2)− (Py) (l1)‖X ≤ (l2 − l1) ‖qi (si, ȳ (si))‖X

×
∫ l1

si

(l2 − l1)
∥∥f (s, ȳρ(s,ȳs , Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)∥∥
X
ds

+

∫ l2

l1

(l2 − s)
∥∥f (s, ȳρ(s,ȳs), Aȳρ(s,ȳs), Bȳρ(s,ȳs)

)∥∥
X
ds

≤ (l2 − l1)M6r + (l2 − l1)T (M1 +M2A
∗ +M3B

∗) r∗

+
(l2 − l1)2

2
(M1 +M2A

∗ +M3B
∗) r∗.

Letting l2 → l1. Then

‖P (y) (l2)− P (y) (l1)‖X → 0.

This implies that P is equi-continuous on all t ∈ J in Br. Thus, by Arzela-
Ascoli Theorem, it follows that P is completely continuous. Therefore, by
Schauder fixed point theorem, the operator P has a fixed point, which in
turn implies that problem (1.1)-(1.3) has at least one solution on J . This is
complete the proof of theorem. �

4. Example

Consider the following nonlinear impulsive fractional functional initial value
problem:
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D
3
2
t y(t) =

1

Γ(2− α)

∫ t

0
(t− s)1−α

[∫ s

−∞
e2(ν−s) y(v − σ(‖y‖))

24
dv

+

∫ ξ

0
cos(γ − ξ)y(γ − σ(‖y‖))

25
dγ

+

∫ π

0
sin(γ − ξ)y(γ − σ(‖y‖))

26
dγ

]
ds, (4.1)

y(t) +
r∑

k=1

cky (sk) = φ(t), t ∈ (−∞, 0], y ∈ [0, π], (4.2)

y′(t) +
r∑

k=1

dky (sk) = ψ(t), t ∈ (−∞, 0], y ∈ [0, π], (4.3)

y(t) = Gi(t, y); y′(t) = Hi(t, y),

t ∈ (ti, si] , (t, y) ∈ ∪Ni=1 [si, ti+1]× [0, π]. (4.4)

For the phase space Bh, let h(s) = e2s, s < 0. Then l =
∫ 0
−∞ h(s)ds = 1

2 <

∞, for t ∈ (−∞, 0] and define

‖φ‖Bh =

∫ 0

−∞
h(s) sup

θ∈[s,0]
‖φ(θ)‖L2ds.

Hence for (t, φ) ∈ [0, 1] ×Bh, let y : (−∞, T ] → L2[0, π] such that y ∈ Bh.
Setting

ρ(t, φ) = t− σ(‖φ(0)‖), (t, φ) ∈ J ×Bh,

then, we have

f(t, φ,Aφ,Bφ)

=

∫ 0

−∞
e2(v)

[
φ

24
+

∫ ξ

0
cos(ξ − γ)

φ

25
dγ +

∫ π

0
sin(ξ − γ)

φ

26
dγ

]
dv,

u(y) =

r∑
k=1

cky (sk) ; v(y) =

r∑
k=1

dky (sk) ,

gi(t, y) = Gi(t, y); qi(t, y) = Hi(t, y),

hence the above equations (4.1)-(4.4) can be written in the abstract form as
(1.1)-(1.3). Further more, we can see that for (t, φ,Aφ,Bφ), (t, ψ,Aψ,Bψ) ∈
J ×Bh ×Bh ×Bh, we get
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‖f(t, φ,Aφ,Bφ)− f(t, ψ,Aψ,Bψ)‖L2

=
[ ∫ π

0

{∫ 0

−∞
e2(s)

∥∥∥∥ φ24
− ψ

24

∥∥∥∥ ds
+

∫ 0

−∞
e2(s)

∫ ξ

0
‖ cos(γ − ξ)

∥∥∥ φ
25
− ψ

25

∥∥∥dγds
+

∫ 0

−∞
e2(s)

∫ ξ

0
‖ sin(γ − ξ)

∥∥∥ φ
26
− ψ

26

∥∥∥dγds}2
dy
]1/2]

≤
[ ∫ π

0

{∫ 0

−∞
e2(s)

∥∥∥∥ φ24
− ψ

24

∥∥∥∥ ds+

∫ 0

−∞
e2(s)

∥∥∥ φ
25
− ψ

25

∥∥∥ds
+

∫ 0

−∞
e2(s)

∥∥∥ φ
26
− ψ

26

∥∥∥ds}2
dy
]1/2

≤
[ ∫ π

0

{ 1

24

∫ 0

−∞
e2(s) sup ‖φ− ψ‖ds

+
1

25

∫ 0

−∞
e2(s) sup ‖φ− ψ‖ds

+
1

26

∫ 0

−∞
e2(s) sup ‖φ− ψ‖ds

}2
dy
]1/2

≤
√
π

24
‖φ− ψ‖+

√
π

25
‖φ− ψ‖+

√
π

26
‖φ− ψ‖.

Hence the function f satisfies (H1). Similarly we can show that the functions
gi, qi, u, v satisfy (H3) , (H5). All the condition of theorem 3.1 have fulfilled so
we deduced that the system (4.1)-(4.4) has a unique solution on [0, 1].

5. Conclusion

In this work, we have examined the existence and uniqueness of solutions
for a class of not instantaneous impulsive problems of nonlinear fractional
functional Volterra-Fredholm integro-differential equations by means of the
Schauder fixed point theorem and Arzela-Ascoli theorem.

The problem considered in this paper can be generalized to a higher di-
mension involving a general formulation of fractional derivative with respect
to another function. Also, study nonlinear fractional systems of Volterra-
Fredholm integro-differential equations with nonlocal conditions is a direction
which we are working on.
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