KYUNGPOOK Math. J. 49(2009), 31-39

Fractional Integrals and Generalized Olsen Inequalities

Hendra Gunawan*

Department of Mathematics, Bandung Institute of Technology, Bandung 40132, Indonesia

e-mail: hgunawan@math.itb.ac.id

Eridani

Department of Mathematics, Airlangga University Surabaya 60115, Indonesia e-mail: eridaniQunair.ac.id

ABSTRACT. Let T_{ρ} be the generalized fractional integral operator associated to a function $\rho: (0, \infty) \to (0, \infty)$, as defined in [16]. For a function W on \mathbb{R}^n , we shall be interested in the boundedness of the multiplication operator $f \mapsto W \cdot T_{\rho} f$ on generalized Morrey spaces. Under some assumptions on ρ , we obtain an inequality for $W \cdot T_{\rho}$, which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.

1. Introduction

For $0 < \alpha < n$, let I_{α} denote the Riesz potential or the (classical) fractional integral operator, which is given by the formula

$$I_{\alpha}f(x) := \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy.$$

Formally, through its Fourier transform, the operator I_{α} can be recognized as a multiple of the Laplacian to the power of $-\frac{\alpha}{2}$, that is,

$$I_{\alpha}f = \kappa(-\Delta)^{-\alpha/2}f,$$

where $\kappa = \kappa(n, \alpha)$ (see, for instance, [2], [13], [22], [24]). A well-known result for I_{α} is the Hardy-Littlewood-Sobolev inequality, which was proved by Hardy and Littlewood [8], [10] and Sobolev [23] around the 1930's.

Theorem 1.1 (Hardy-Littlewood; Sobolev). For 1 , we have the inequality

(1.1)
$$||I_{\alpha}f||_q \le C_p ||f||_p,$$

^{*} Corresponding author.

Received 23 April 2007; received in revised form 24 April 2007; accepted 1 May 2007. 2000 Mathematics Subject Classification: 26A33, 47B38, 42B20, 42B25, 26D10.

Key words and phrases: Fractional integral operators, Hardy-Littlewood maximal operators, multiplication operators, Olsen inequality, Morrey spaces.

³¹

that is, I_{α} is bounded from $L^{p}(\mathbb{R}^{n})$ to $L^{q}(\mathbb{R}^{n})$, provided that $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$.

As an immediate consequence of this inequality, one has the following estimate for $(-\Delta)^{-1}$:

$$\|(-\Delta)^{-1}f\|_{np/(n-2)} \le C_p \|f\|_p,$$

for $1 , <math>n \ge 3$. Here $u := (-\Delta)^{-1}f$ is a solution of the Poisson equation $-\Delta u = f$. From (1.1) one can also prove Sobolev's embedding theorems (see [24]).

Decades later, the inequality has been extended from Lebegues spaces to Morrey spaces. For $1 \leq p < \infty$ and $0 \leq \lambda \leq n$, the (classical) Morrey space $L^{p,\lambda} = L^{p,\lambda}(\mathbb{R}^n)$ is defined to be the space of all functions $f \in L^p_{loc}(\mathbb{R}^n)$ for which

$$||f||_{p,\lambda} := \sup_{B=B(a,r)} \left(\frac{1}{r^{\lambda}} \int_{B} |f(y)|^{p} dy\right)^{1/p} < \infty,$$

where B(a, r) denotes the (open) ball centered at $a \in \mathbb{R}^n$ with radius r > 0 [14]. Here $\|\cdot\|_{p,\lambda}$ defines a semi-norm on $L^{p,\lambda}$. Note particularly that $L^{p,0} = L^p$ and $L^{p,n} = L^{\infty}$. For the structure of Morrey spaces and their generalizations, see the works of S. Campanato [3], J. Peetre [21], C. T. Zorko [26], and the references therein.

In the 1960's, S. Spanne proved that I_{α} is bounded from $L^{p,\lambda}$ to $L^{q,\lambda q/p}$ for 1 , as stated in [21]. A stronger result was obtained by D. R. Adams [1] and reproved by F. Chiarenza and M. Frasca [4].

Theorem 1.2 (Adams; Chiarenza-Frasca). For $1 and <math>0 \le \lambda < n - \alpha p$, we have the inequality

$$\|I_{\alpha}f\|_{q,\lambda} \le C_{p,\lambda}\|f\|_{p,\lambda}$$

provided that $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n-\lambda}$.

The proof usually involves the properties of the Hardy-Littlewood maximal operator M, defined by the formula

$$Mf(x) := \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| \, dy,$$

where $|B(x,r)| = c r^n$ is the Lebesgue measure of B(x,r). The operator M is known to be bounded on L^p for 1 [9]. Chiarenza and Frasca [4] proved that <math>Mis also bounded on Morrey spaces.

Theorem 1.3 (Chiarenza-Frasca). The inequality

$$||Mf||_{p,\lambda} \le C_{p,\lambda} ||f||_{p,\lambda}$$

holds for p > 1 and $0 \le \lambda < n$.

For $1 \leq p < \infty$ and a suitable function $\phi : (0, \infty) \to (0, \infty)$, we define the (generalized) Morrey space $\mathcal{M}_{p,\phi} = \mathcal{M}_{p,\phi}(\mathbb{R}^n)$ to be the space of all functions $f \in L^p_{\text{loc}}(\mathbb{R}^n)$ for which

$$||f||_{p,\phi} := \sup_{B=B(a,r)} \frac{1}{\phi(r)} \left(\frac{1}{|B|} \int_{B} |f(y)|^{p} dy\right)^{1/p} < \infty.$$

Note that for $\phi(t) = t^{(\lambda-n)/p}$, $0 \le \lambda \le n$, we have $\mathcal{M}_{p,\phi} = L^{p,\lambda}$ — the classical Morrey space. Unless stated otherwise, we assume hereafter that the function ϕ satisfies the following two conditions:

(1.1)
$$\frac{1}{2} \le \frac{r}{s} \le 2 \Rightarrow \frac{1}{C_1} \le \frac{\phi(r)}{\phi(s)} \le C_1.$$

(1.2)
$$\int_{r}^{\infty} \frac{\phi^{p}(t)}{t} dt \leq C_{2} \phi^{p}(r) \text{ for } 1$$

The condition (1.1) is known as the doubling condition (with a doubling constant C_1). Note that for any function ψ that satisfies the doubling condition, we have

$$\int_{2^{k}r}^{2^{k+1}r} \frac{\psi(t)}{t} \, dt \sim \psi(2^{k}r),$$

for every integer k and r > 0.

Now, for a given function $\rho : (0,\infty) \to (0,\infty)$, we define the (generalized) fractional integral operator T_{ρ} by

$$T_{\rho}f(x) := \int_{\mathbb{R}^n} \frac{\rho(|x-y|)}{|x-y|^n} f(y) \, dy.$$

For $\rho(t) = t^{\alpha}$, $0 < \alpha < n$, we have $T_{\rho} = I_{\alpha}$ — the classical fractional integral operator. The boundedness of the operator T_{ρ} on the generalized Morrey space $\mathcal{M}_{p,\phi}$ was first studied by Nakai [16]. Recent results on T_{ρ} can be found in [5], [6], [7], [17], [18], [19].

In this paper, we shall be interested in the boundedness of the multiplication operators $f \mapsto W \cdot I_{\alpha} f$ and $f \mapsto W \cdot T_{\rho} f$ on generalized Morrey spaces. In both cases, W is just a function on \mathbb{R}^n . We prove an inequality for $W \cdot I_{\alpha}$ [Theorem 3.3] and, under some assumptions on ρ , we also obtain an inequality for $W \cdot T_{\rho}$ [Theorem 3.5]. Our results can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results. Indeed, for $\rho(t) = t^{\alpha}$, $0 < \alpha < n$, the inequalities for $W \cdot T_{\rho}$ reduce to those for the classical fractional integral operator $W \cdot I_{\alpha}$.

2. Inequalities for I_{α} and T_{ρ}

In [15], E. Nakai proved the boundedness of the Hardy-Littlewood maximal operator on generalized Morrey spaces.

Theorem 2.1 (Nakai). The inequality

$$||Mf||_{p,\phi} \le C_{p,\phi} ||f||_{p,\phi}$$

holds for 1 .

Nakai also obtained the boundedness of I_{α} on generalized Morrey spaces, which can be viewed as an extension of Spanne's result. A similar result was also obtained by Sugano-Tanaka [25]. The following theorem can be considered as an extension of Adams-Chiarenza-Frasca's result.

Theorem 2.2. Suppose that, in addition to the condition (1.1) and (1.2), ϕ satisfies the inequality $\phi(t) \leq Ct^{\beta}$ for $-\frac{n}{p} \leq \beta < -\alpha$, $1 . Then, for <math>q = \frac{\beta p}{\alpha + \beta}$, we have $\|I_{\alpha}f\|_{q,\phi^{p/q}} \leq C_{p,\beta}\|f\|_{p,\phi}$.

Proof. As before, we assume that $f \neq 0$ and Mf is finite everywhere. For each $x \in \mathbb{R}^n$, write $I_{\alpha}f(x) = I_1(x) + I_2(x)$ where

$$I_1(x) := \int_{|x-y| < R} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy \quad \text{and} \quad I_2(x) := \int_{|x-y| \ge R} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy,$$

with R being an arbitrary positive number. Then, $|I_1(x)| \leq C R^{\alpha} M f(x)$, while for I_2 we have

$$|I_{2}(x)| \leq \sum_{k=0}^{\infty} \int_{2^{k}R \leq |x-y| < 2^{k+1}R} \frac{|f(y)|}{|x-y|^{n-\alpha}} dy$$

$$\leq \sum_{k=0}^{\infty} (2^{k}R)^{\alpha-n} \int_{B(x,2^{k+1}R)} |f(y)| dy$$

$$\leq C \sum_{k=0}^{\infty} (2^{k}R)^{\alpha-\frac{n}{p}} \left(\int_{B(x,2^{k+1}R)} |f(y)|^{p} dy \right)^{1/p}$$

$$\leq C \sum_{k=0}^{\infty} (2^{k}R)^{\alpha} \phi(2^{k}R) \|f\|_{p,\phi}$$

$$\leq C \|f\|_{p,\phi} \sum_{k=0}^{\infty} (2^{k}R)^{\alpha+\beta}$$

$$\leq C R^{\alpha+\beta} \|f\|_{p,\phi}.$$

Now choose $R = \left(\frac{Mf(x)}{\|f\|_{p,\phi}}\right)^{1/\beta}$ to get

 $|I_{\alpha}f(x)| \le |I_1(x)| + |I_2(x)| \le C \left[Mf(x)\right]^{(\alpha+\beta)/\beta} ||f||_{p,\phi}^{-\alpha/\beta} = C \left[Mf(x)\right]^{p/q} ||f||_{p,\phi}^{1-p/q}.$

The inequality then follows from this and Theorem 2.1.

Remark. Observe that when $\phi(t) = t^{(\lambda-n)/p}$, $0 \le \lambda < n - \alpha p$, $1 and <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n-\lambda}$, Theorem 2.2 reduces to Theorem 1.2.

A slight modification of Theorem 2.2 may be formulated for T_{ρ} as follows. We leave its proof to the reader.

Theorem 2.3. Suppose that $\rho(t) \leq C_1 t^{\alpha}$ for some $0 < \alpha < n$, and, in addition to the condition (1.1) and (1.2), $\phi(t) \leq C_2 t^{\beta}$ for $-\frac{n}{p} \leq \beta < -\alpha$, 1 . Then,

for
$$q = \frac{\beta p}{\alpha + \beta}$$
, we have
 $\|T_{\rho}f\|_{q,\phi^{p/q}} \leq C_{p,\beta}\|f\|_{p,\phi}.$

The following result of H. Gunawan [7] gives a further generalization of Theorem 1.2.

Theorem 2.4 (Gunawan). Suppose that, in addition to the condition (1.1) and (1.2), ϕ is surjective. If ρ satisfies the doubling condition and

$$\int_0^r \frac{\rho(t)}{t} dt \le C\phi(r)^{(p-q)/q} \quad \text{and} \quad \int_r^\infty \frac{\rho(t)\phi(t)}{t} dt \le C\phi(r)^{p/q},$$

for 1 , then we have

$$||T_{\rho}f||_{q,\phi^{p/q}} \le C_{p,\phi}||f||_{p,\phi},$$

that is, T_{ρ} is bounded from $\mathcal{M}_{p,\phi}$ to $\mathcal{M}_{q,\phi^{p/q}}$.

3. Inequalities for $W \cdot I_{\alpha}$ and $W \cdot T_{\rho}$

In studying a Schrödinger equation with perturbed potentials W on \mathbb{R}^n (particularly for n = 3), P. A. Olsen [20] proved the following result.

Theorem 3.1 (Olsen). For $1 and <math>0 \le \lambda < n - \alpha p$, we have

$$\|W \cdot I_{\alpha}f\|_{p,\lambda} \le C_{p,\lambda} \|W\|_{(n-\lambda)/\alpha,\lambda} \|f\|_{p,\lambda},$$

that is, $W \cdot I_{\alpha}$ is bounded on $L^{p,\lambda}$, provided that $W \in L^{(n-\lambda)/\alpha,\lambda}$.

As a consequence of Theorem 3.1, we see that for $1 , <math>n \ge 3$, the estimate

 $\|W \cdot (-\Delta)^{-1} f\|_{p,\lambda} \le C_{p,\lambda} \|W\|_{(n-\lambda)/2,\lambda} \|f\|_{p,\lambda},$

holds provided that $W \in L^{(n-\lambda)/2,\lambda}$, $0 \leq \lambda < n-2p$. In particular, when $\lambda = 0$, one has

$$||W \cdot (-\Delta)^{-1}f||_p \le C_p \, ||W||_{n/2} ||f||_p$$

provided that $W \in L^{n/2}$.

K. Kurata *et al.* [12] extended Olsen's result by proving that, for some p > 1and a function ϕ satisfying several conditions (including the doubling condition), the operator $W \cdot I_{\alpha}$ is bounded on generalized Morrey spaces $\mathcal{M}_{p,\phi}$, provided that $W \in \mathcal{M}_{s_1,\phi} \cap \mathcal{M}_{s_2,\phi}$ for some indices s_1 and s_2 . Their estimate, however, is rather complicated. We shall here present simpler estimates for $W \cdot I_{\alpha}$ on generalized Morrey spaces.

The first estimate below is a consequence of Theorem 2.2, while the second one is obtained directly without using Theorem 2.2.

Theorem 3.2. Suppose that, in addition to the condition (1.1) and (1.2), ϕ satisfies the inequality $\phi(t) \leq Ct^{\beta}$ for $-\frac{n}{p} \leq \beta < -\alpha$, 1 . Then, we have

$$||W \cdot I_{\alpha}f||_{p,\phi} \le C_{p,\beta} ||W||_{s,\phi^{p/s}} ||f||_{p,\phi}$$

provided that $W \in \mathcal{M}_{s,\phi^{p/s}}$ where $s = -\frac{\beta p}{\alpha}$.

Proof. Use Hölder's inequality and Theorem 2.2.

Theorem 3.3. Suppose that ϕ satisfies the doubling condition and the inequality

$$\int_{r}^{\infty} t^{\alpha-1} \phi(t) \, dt \le C \, r^{\alpha} \phi(r).$$

Then, for 1 , we have

$$||W \cdot I_{\alpha}f||_{p,\phi} \le C_{p,\phi} ||W||_{n/\alpha} ||f||_{p,\phi},$$

provided that $W \in L^{n/\alpha}$.

Proof. For $a \in \mathbb{R}^n$ and r > 0, let B = B(a, r), $\tilde{B} = B(a, 2r)$, and write $f = f_1 + f_2 := f\chi_{\tilde{B}} + f\chi_{\tilde{B}^c}$. We observe that $f_1 \in L^p$ with

$$\|f_1\|_p = \left(\int_{\mathbb{R}^n} |f_1(y)|^p dy\right)^{1/p} = \left(\int_{\tilde{B}} |f(y)|^p dy\right)^{1/p} \le C r^{n/p} \phi(r) \|f\|_{p,\phi}$$

Hence, by applying Theorem 3.1 for $\lambda = 0$, we get

$$\left(\int_{B} |W \cdot I_{\alpha} f_{1}(x)|^{p} dx\right)^{1/p} \leq \|W \cdot I_{\alpha} f_{1}\|_{p} \leq C \, \|W\|_{n/\alpha} \|f_{1}\|_{p} \leq C \, r^{n/p} \phi(r) \|W\|_{n/\alpha} \|f\|_{p,\phi}$$

whence

$$\frac{1}{\phi(r)} \left(\frac{1}{|B|} \int_{B} |W \cdot I_{\alpha} f_{1}(x)|^{p} dx \right)^{1/p} \leq C \, \|W\|_{n/\alpha} \|f\|_{p,\phi}.$$

Next, for $x \in B$, we have

$$|I_{\alpha}f_{2}(x)| \leq \int_{\tilde{B}^{c}} \frac{|f(y)|}{|x-y|^{n-\alpha}} dy \leq \int_{|x-y|\geq r} \frac{|f(y)|}{|x-y|^{n-\alpha}} dy.$$

Then, as in the proof of Theorem 2.4, we shall obtain

$$|I_{\alpha}f_{2}(x)| \leq C \, \|f\|_{p,\phi} \int_{r}^{\infty} t^{\alpha-1}\phi(t) \, dt \leq C \, r^{\alpha}\phi(r) \|f\|_{p,\phi}.$$

Hence

$$\begin{split} \left(\frac{1}{|B|}\int_{B}|W\cdot I_{\alpha}f_{2}(x)|^{p}dx\right)^{1/p} &\leq C\,r^{\alpha}\phi(r)\|f\|_{p,\phi}\left(\frac{1}{|B|}\int_{B}|W(x)|^{p}\,dx\right)^{1/p} \\ &\leq C\,r^{\alpha}\phi(r)\|f\|_{p,\phi}\left(\frac{1}{|B|}\int_{B}|W(x)|^{n/\alpha}dx\right)^{\alpha/n} \\ &\leq C\,\phi(r)\|W\|_{n/\alpha}\|f\|_{p,\phi}, \end{split}$$

and so

$$\frac{1}{\phi(r)} \left(\frac{1}{|B|} \int_{B} |W \cdot I_{\alpha} f_{2}(x)|^{p} dx\right)^{1/p} \leq C \, \|W\|_{n/\alpha} \|f\|_{p,\phi}.$$

The desired estimate follows from the two estimates via Minkowski inequality. $\hfill\square$

The following two theorems provide estimates for $W \cdot T_{\rho}$ on generalized Morrey spaces. The first is a consequence of Theorem 2.3, while the second follows from Theorem 2.4. We leave the proof of the former to the reader.

Theorem 3.4. Suppose that $\rho(t) \leq C_1 t^{\alpha}$ for some $0 < \alpha < n$, and, in addition to the condition (1.1) and (1.2), $\phi(t) \leq C_2 t^{\beta}$ for $-\frac{n}{p} \leq \beta < -\alpha$, 1 . Then, we have

$$||W \cdot T_{\rho}f||_{p,\phi} \le C_{p,\beta} ||W||_{s,\phi^{p/s}} ||f||_{p,\phi}$$

provided that $W \in \mathcal{M}_{s,\phi^{p/s}}$ where $s = -\frac{\beta p}{\alpha}$.

Theorem 3.5. Suppose that, in addition to the condition (1.1) and (1.2), ϕ is surjective. If ρ satisfies the doubling condition and

$$\int_0^r \frac{\rho(t)}{t} \, dt \le C\phi(r)^{(p-q)/q} \quad and \quad \int_r^\infty \frac{\rho(t)\phi(t)}{t} \, dt \le C\phi(r)^{p/q},$$

for 1 , then we have

$$||W \cdot T_{\rho}f||_{p,\phi} \le C_{p,\phi} ||W||_{s,\phi^{p/s}} ||f||_{p,\phi},$$

provided that $W \in \mathcal{M}_{s,\phi^{p/s}}$ where $\frac{1}{s} = \frac{1}{p} - \frac{1}{q}$.

Proof. Let B = B(a, r) be an arbitrary ball in \mathbb{R}^n . By Hölder's inequality, we have

$$\frac{1}{|B|} \int_{B} |W \cdot T_{\rho} f(x)|^{p} dx \leq \left(\frac{1}{|B|} \int_{B} |W(x)|^{s} dx\right)^{p/s} \left(\frac{1}{|B|} \int_{B} |T_{\rho} f(x)|^{q} dx\right)^{p/q},$$

with $\frac{p}{s} + \frac{p}{q} = 1$. Now take the *p*-th roots and then divide both sides by $\phi(r)$ to get

$$\begin{aligned} \frac{1}{\phi(r)} \Big(\frac{1}{|B|} \int_{B} |W \cdot T_{\rho} f(x)|^{p} dx \Big)^{1/p} &\leq \frac{1}{\phi(r)^{p/s}} \Big(\frac{1}{|B|} \int_{B} |W(x)|^{s} dx \Big)^{1/s} \\ &\times \frac{1}{\phi(r)^{p/q}} \Big(\frac{1}{|B|} \int_{B} |T_{\rho} f(x)|^{q} dx \Big)^{1/q} \\ &\leq C \, \|W\|_{s,\phi^{p/s}} \|T_{\rho} f\|_{q,\phi^{p/q}}. \end{aligned}$$

The desired inequality is obtained by taking the supremum over all balls B and using the fact that T_{ρ} is bounded from $\mathcal{M}_{p,\phi}$ to $\mathcal{M}_{q,\phi^{p/q}}$.

Acknowledgment. The first author is supported by ITB Research Grant No. 0004/ K01.03.2/PL2.1.5/I/2006.

References

- [1] D. R. Adams, A note on Riesz potentials, Duke Math. J., 42(1975), 765-778.
- [2] D. R. Adams and L. I. Hedberg, Functions Spaces and Potential Theory, Springer-Verlag, Berlin, 1996.
- [3] S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa, 18(1964), 137-160.
- F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat., 7(1987), 273-279.
- [5] Eridani, On the boundedness of a generalized fractional integral on generalized Morrey spaces, Tamkang J. Math., 33(2002), 335-340.
- [6] Eridani, H. Gunawan, and E. Nakai, On generalized fractional integral operators, Sci. Math. Jpn., 60(2004), 539-550.
- [7] H. Gunawan, A note on the generalized fractional integral operators, J. Indones. Math. Soc. (MIHMI), 9(2003), 39-43.
- [8] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Zeit., 27(1927), 565-606.
- [9] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math., 54(1930), 81-116.
- [10] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Zeit., 34(1932), 403-439.

- [11] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc., 36(1972), 505-510.
- [12] K. Kurata, S. Nishigaki, and S. Sugano, Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators, Proc. Amer. Math. Soc., 128(2002), 1125-1134.
- [13] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
- [14] C. B. Morrey, Functions of several variables and absolute continuity, Duke Math. J., 6(1940), 187-215.
- [15] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators, and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166(1994), 95-103.
- [16] E. Nakai, On generalized fractional integrals, Taiwanese J. Math., 5(2001), 587-602.
- [17] E. Nakai, On generalized fractional integrals on the weak Orlicz spaces, BMO_φ, the Morrey spaces and the Campanato spaces, in *Function Spaces, Interpolation Theory* and Related Topics (Lund, 2000), 95-103, de Gruyter, Berlin, 2002.
- [18] E. Nakai, Recent topics on fractional integral operators (Japanese), Sūgaku, 56(2004), 260-280.
- [19] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, in Banach and Function Spaces, 323-333, Yokohama Publ., Yokohama, 2004.
- [20] P. A. Olsen, Fractional integration, Morrey spaces and a Schrödinger equation, Comm. Partial Differential Equations, 20(1995), 2005-2055.
- [21] J. Peetre, On the theory of $\mathcal{L}_{p,\lambda}$ spaces, J. Funct. Anal., 4(1969), 71-87.
- [22] B. Rubin, Fractional Integrals and Potentials, Addison-Wesley, Essex, 1996.
- [23] S. L. Sobolev, On a theorem in functional analysis (Russian), Mat. Sob., 46(1938), 471-497 [English translation in Amer. Math. Soc. Transl. ser. 2, 34(1963), 39-68].
- [24] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
- [25] S. Sugano and H. Tanaka, Boundedness of fractional integral operators on generalized Morrey spaces, Sci. Math. Jpn., 58(2003), 531-540.
- [26] C. T. Zorko, Morrey space, Proc. Amer. Math. Soc., 98(1986), 586-592.