DOI QR코드

DOI QR Code

AN INVESTIGATION ON THE EXISTENCE AND UNIQUENESS ANALYSIS OF THE FRACTIONAL NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Received : 2022.05.26
  • Accepted : 2022.07.28
  • Published : 2023.03.03

Abstract

In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations are investigated. An example is given to illustrate the main results.

Keywords

Acknowledgement

The author is very grateful to the editors and the anonymous referees for their careful reading of the manuscript and insightful comments, which helped to improve the quality and improvement of the presentation of the paper.

References

  1. A. Abed, M. Younis and A. Hamoud, Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM, Nonlinear Funct. Anal. Appl., 27(1) (2022), 189-201.
  2. A. Babakhani and V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl., 278(2) (2003), 434-442. https://doi.org/10.1016/S0022-247X(02)00716-3
  3. D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific, Hackensack, NJ, USA, 2012.
  4. M. Benchohra and F. Berhoun, Impulsive fractional differential equations with state dependent delay, Commun. Appl. Anal., 14(2) (2010), 213-224.
  5. Y.-K. Chang, V. Kavitha, and M. Mallika Arjunan, Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order, Nonlinear Anal., 71(11) (2009), 5551-5559. https://doi.org/10.1016/j.na.2009.04.058
  6. A. Chen, F. Chen and S. Deng, On almost automorphic mild solutions for fractional semilinear initial value problems, Comput. Math. Appl., 59(3) (2010), 1318-1325. https://doi.org/10.1016/j.camwa.2009.07.001
  7. J. Dabas and G.R. Gautam, Impulsive neutral fractional integro-differential equation with state dependent delay and integral boundary condition, Electron. J. Diff. Equ. 273 (2013), 1-13.
  8. D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204(2) (1996), 609-625. https://doi.org/10.1006/jmaa.1996.0456
  9. A.E.M. El-Mesiry, A.M.A. El-Sayed and H.A.A. El-Saka, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comput., 160(3) (2005), 683-699. https://doi.org/10.1016/j.amc.2003.11.026
  10. A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4(4) (2020), 321-331. https://doi.org/10.31197/atnaa.799854
  11. A. Hamoud, M.SH. Bani Issa and K. Ghadle, Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Funct. Anal. Appl., 23(4) (2018), 797-805. https://doi.org/10.22771/NFAA.2018.23.04.15
  12. A. Hamoud and K. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5(1) (2019), 58-69. https://doi.org/10.7862/rf.2018.9
  13. A. Hamoud and K. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations, Iranian J. Math. Sci. Infor., 17(1) (2022), 135-144. https://doi.org/10.52547/ijmsi.17.1.135
  14. A. Hamoud and N. Mohammed, Existence and uniqueness of solutions for the neutral fractional integro differential equations, Dyna. Conti. Disc. and Impulsive Syst. Series B: Appl. Algo., 29 (2022), 49-61.
  15. A. Hamoud and N. Mohammed, Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear Volterra-Fredholm integral equations, Discontinuity, Nonlinearity and Complexity, 11(3) (2022), 515-521. https://doi.org/10.5890/DNC.2022.09.012
  16. A. Hamoud, N. Mohammed and K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4(4) (2020), 361-372. https://doi.org/10.31197/atnaa.703984
  17. A. Hamoud, N. Mohammed and K. Ghadle Existence, uniqueness and stability results for nonlocal fractional nonlinear Volterra-Fredholm integro differential equations, Discontinuity, Nonlinearity, and Complexity, 11(2) (2022), 343-352. https://doi.org/10.5890/DNC.2022.06.013
  18. I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fractional IVPs, Commu. Nonlinear Sci. Nume. Simu., 14(3) (2009), 674-684. https://doi.org/10.1016/j.cnsns.2007.09.014
  19. E. Hernandez and D. O'Regan, On a new class of abstract impulsive differential equations, Proce. Amer. Math. Soc., 141(5) (2013), 1641-1649. https://doi.org/10.1090/S0002-9939-2012-11613-2
  20. K. Hussain, Existence and uniqueness results of mild solutions for integro-differential Volterra-Fredholm equations, J. Math. Comput. Sci., 28(2) (2023), 137-144. https://doi.org/10.22436/jmcs.028.02.02
  21. K. Hussain, A. Hamoud and N. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Funct. Anal. Appl., 24(4) (2019), 827-836.
  22. K. Ivaz, I. Alasadi and A. Hamoud, On the Hilfer fractional Volterra-Fredholm integro differential equations, IAENG Inter. J. Appl. Math., 52(2) (2022), 426-431.
  23. A. Kashuri, S.K. Sahoo, B. Kodamasingh, M. Tariq, A.A. Hamoud, H. Emadifar, F.K. Hamasalh, N.M. Mohammed and M. Khademi, Integral inequalities of integer and fractional orders for n-polynomial harmonically tgs-convex functions and their applications, J. of Math., 2022 (2022), Article ID 2493944, 1-18. https://doi.org/10.1155/2022/2493944
  24. A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Elsevier Science, Amsterdam, The Netherlands, 2006.
  25. V. Lakshmikantham and A. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69(8) (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
  26. V. Lakshmikantham and A. Vatsala, Theory of fractional differential inequalities and applications, Commu. Appl. Anal., 11(3-4) (2007), 395-402.
  27. V. Lakshmikantham and A. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Letters, 21(8) (2008), 828-834. https://doi.org/10.1016/j.aml.2007.09.006
  28. F.A. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal., 71(12) (2009), 6093-6096. https://doi.org/10.1016/j.na.2009.05.074
  29. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
  30. I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Ca, USA, 1999.
  31. G. Ram and J. Dabas, Existence result of fractional functional integro-differential equation with not instantaneous impulse, Inter. J. Adv. Appl. Math. Mech., 1(3) (2014), 11-21.
  32. J.D. Ramirez and A.S. Vatsala, Monotone iterative technique for fractional differential equations with periodic boundary conditions, Opuscula Mathematica, 29(3) (2009), 289-304. https://doi.org/10.7494/OpMath.2009.29.3.289
  33. J. Wang and X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., (2014), DOI 10.1007/s12190-013-0751-4.
  34. S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71(5-6) (2009), 2087-2093. https://doi.org/10.1016/j.na.2009.01.043