References
- S. Abbasbandy, S. Kazem, M. S. Alhuthali, and H. H. Alsulami, Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion equation, Appl. Math. Comput. 266 (2015), 31-40.
- R. L. Bagley and P. J. Torvik, Fractional calculus: a different approach to the analysis of viscoelastically damped structures, AIAA J. 21 (1983), no. 5, 741-748. https://doi.org/10.2514/3.8142
- D. Elliott, An asymptotic analysis of two algorithms for certain Hadamard finite part integrals, IMA J. Numer. Anal. 13 (1993), no. 3, 445-462. https://doi.org/10.1093/imanum/13.3.445
- S. Kazem, An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations, Appl. Math. Modell. 37 (2013), no. 3, 1126-1136. https://doi.org/10.1016/j.apm.2012.03.033
- S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci. 16 (2013), no. 1, 3-11.
- S. Kazem, S. Abbasbandy, and Sunil Kumar, Fractional-order Legendre functions for solving fractional order differential equations, Appl. Math. Model. 37 (2013), no. 7, 5498-5510. https://doi.org/10.1016/j.apm.2012.10.026
- N. A. Khan, A. Ara, and M. Jamil, Approximations of the nonlinear Volterra's population model by an ecient numerical method, Math. Methods Appl. Sci. 34 (2011), no. 14, 1733-1738. https://doi.org/10.1002/mma.1479
- N. A. Khan, A. Mahmood, N. A. Khan, and A. Ara, Analytical study of nonlinear fractional-order integrodifferential equation: revisit Volterra's population model, Int. J. Differ. Equ. 2012 (2012), Art. ID 845945, 8 pp. https://doi.org/10.1186/1687-1847-2012-8
- N. Liu and E.-B. Lin, Legendre wavelet method for numerical solutions of partial differential equations, Numer. Methods Partial Differential Equations 26 (2010), no. 1, 81-94. https://doi.org/10.1002/num.20417
- H. Marzban, S. M. Hoseini, and M. Razzaghi, Solution of Volterra's population model via block-pulse functions and Lagrange inerpolating polynomials, Math. Methods Appl. Sci. 32 (2009), no. 2, 127-134. https://doi.org/10.1002/mma.1028
- S. T. Mohyud-Din, A. Yildirim, and Y. Gulkanat, Analytical solution of Volterra's population model, J. King Saud Univ. Sci. 22 (2010), 247-250. https://doi.org/10.1016/j.jksus.2010.05.005
- S. Momani and R. Qaralleh, Numerical approximations and Pade's approximants for a fractional population growth model, Appl. Math. Model. 31 (2007), 1907-1914. https://doi.org/10.1016/j.apm.2006.06.015
- K. Parand, S. Abbasbandy, S. Kazem, and J. A. Rad, A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 11, 4250-4258. https://doi.org/10.1016/j.cnsns.2011.02.020
- K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, and M. Kazemnasab Haji, Collocation method using sinc and rational Legendre functions for solving Volterra's population model, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 4, 1811-1819. https://doi.org/10.1016/j.cnsns.2010.08.018
- K. Parand and G. Hojjati, Solving Volterra's population model using new second derivative multistep methods, Am. J. Appl. Sci. 5 (2008), 1019-1022. https://doi.org/10.3844/ajassp.2008.1019.1022
- K. Parand, A. R. Rezaei, and A. Taghavi, Numerical approximations for population growth model by rational Chebyshev and Hermite functions collocation approach: a comparison, Math. Methods Appl. Sci. 33 (2010), no. 17, 2076-2086. https://doi.org/10.1002/mma.1318
- J. A. Rad, S. Kazem, M. Shaban, K. Parand, and A. Yildirim, Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials, Math. Methods Appl. Sci. 37 (2014), no. 3, 329-342. https://doi.org/10.1002/mma.2794
- M. Ramezani, M. Razzaghi, and M. Dehghan, Composite spectral functions for solving Volterra's population model, Chaos Solitons Fractals 34 (2007), no. 2, 588-593. https://doi.org/10.1016/j.chaos.2006.03.067
- S. Z. Rida and A. M. Yousef, On the fractional order Rodrigues formula for the Legendre polynomials, Adv. Appl. Math. Sci. 10 (2011), no. 5, 509-518.
- FM. Scudo. Vito volterra and theoretical ecology, Theoret. Population Biol. 2 (1971), no. 1, 1-23. https://doi.org/10.1016/0040-5809(71)90002-5
- S. Momani and R. Qaralleh, Numerical approximations and Pade's approximants for a fractional population growth model, Appl. Math. Model. 31 (2007), 1907-1914. https://doi.org/10.1016/j.apm.2006.06.015
- J. Shen and T. Tang, High Order Numerical Methods and Algorithms, Chinese Science Press, Beijing, 2005.
- K. G. TeBeest, Numerical and analytical solutions of Volterra's population model, SIAM Rev. 39 (1997), no. 3, 484-493. https://doi.org/10.1137/S0036144595294850