SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

Shim-Tong Tu, Pin-Yu Wang and H. M. Srivastava

Abstract

Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investagations, the authors present yet another instance of applications of certain fractional calculus operators Alternative derivatrons without using these fractional calculus operators are shown to lead naturally a family of analogous infinte sums involving hypergeometric functions

1. Introduction and Definitions

The subject of fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable importance and popularity during the past three decades or so, due mainly to its demonstrated applications in many seemingly diverse fields of science and engineering (see, for details, [5], [7], and [16]). Various operators of fractional calculus are indeed found to be useful in

[^0]such areas of mathematical analysis as (for example) ordinary and partial differential equations, integral equations, summation of series, et cetera.

One of the most frequently encountered tools in the theory and applications of fractional calculus is furnished by the Riemann-Liouville fractional dufferntegral (that is, fractional derivative and fractional integral) operator D_{z}^{μ} of order μ, defined by (cf., e.g., [15], [16], and [19])
$D_{z}^{\mu}\{f(z)\}:= \begin{cases}\frac{1}{\Gamma(-\mu)} \int_{0}^{z}(z-\zeta)^{-\mu-1} f(\zeta) d \zeta & (\mathfrak{R}(\mu)<0) \\ \frac{d^{m}}{d z^{m}} D_{z}^{\mu-m}\{f(z)\} & (m-1 \leqq \mathfrak{R}(\mu)<m ; m \in \mathbb{N}),\end{cases}$
provided that the integral in (1.1) exists, \mathbb{N} being (as usual) the set of positvee integers. In many recent works (see, for example, [10], [11], [12], [22], and [23]\}, dealing with the summation of series by means of fractional calculus, an essentially equivalent differintegral operator \mathcal{N}_{z}^{ν} ($\nu \in \mathbb{R}$) was employed fairly successfully. We choose first to recall here the definition of this fractional differintegral operator \mathcal{N}_{z}^{ν} as follows:

Definition (cf. [8], [9], and [21]). If the function $f(z)$ is analytic (regular) inside and on \mathcal{C}, where

$$
\mathcal{C}:=\left\{\mathcal{C}^{-}, \mathcal{C}^{+}\right\}
$$

\mathcal{C}^{-}is a contour along the cut joining the points z and $-\infty+i \mathfrak{J}(z)$, which starts from the point at $-\infty$, encircles the point z once counterclockwise, and returns to the point at $-\infty, \mathcal{C}^{+}$is a contour along the cut joining the points z and $\infty+i \mathfrak{J}(z)$, which starts from the point at ∞, encircles the point z once counter-clockwise, and returns to the point at ∞,

$$
\begin{gather*}
\mathcal{N}_{z}^{\nu}\{f(z)\}:=\frac{\Gamma(\nu+1)}{2 \pi i} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta-z)^{\nu+1}} d \zeta \\
\left(\nu \in \mathbb{R} \backslash \mathbb{Z}^{-} ; \mathbb{Z}^{-}:=\{-1,-2,-3, \ldots\}\right) \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{N}_{z}^{-n}\{f(z)\}:=\lim _{\nu \rightarrow-n}\left(\mathcal{N}_{z}^{\nu}\{f(z)\}\right) \quad(n \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

where $\zeta \neq z$,

$$
\begin{equation*}
-\pi \leqq \arg (\zeta-z) \leqq \pi \quad \text { for } \quad \mathcal{C}^{-} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leqq \arg (\zeta-z) \leqq 2 \pi \quad \text { for } \quad \mathcal{C}^{+} \tag{1.5}
\end{equation*}
$$

then $\mathcal{N}_{z}^{\nu}\{f(z)\}(\nu>0)$ is said to be the fractional derivative of $f(z)$ of order ν and $\mathcal{N}_{z}^{\nu}\{f(z)\}(\nu<0)$ is said to be the fractional integral of $f(z)$ of order $-\nu$, provided that

$$
\begin{equation*}
\left|\mathcal{N}_{z}^{\nu}\{f(z)\}\right|<\infty \quad(\nu \in \mathbb{R}) \tag{1.6}
\end{equation*}
$$

For the sake of completeness and ready reference, we find it to be worthwhile also to recall here each of the following potentially useful lemmas and properties associated with the fractional differintegral operator \mathcal{N}_{z}^{ν} which is defined above (see, for details, [8] and [9]).

Lemma 1 (Linearity Property). If the functions $f(z)$ and $g(z)$ are single-valued and analytuc in some domain $\Omega \subseteq \mathbb{C}$, then
$\mathcal{N}_{z}^{\nu}\left\{k_{1} f(z)+k_{2} g(z)\right\}=k_{1} \mathcal{N}_{z}^{\nu}\{f(z)\}+k_{2} \mathcal{N}_{z}^{\nu}\{g(z)\} \quad(\nu \in \mathbb{R} ; z \in \Omega)$
for any constants k_{1} and k_{2}.

Lemma 2 (Index Law). If the function $f(z)$ is single-valued and analytuc in some domain $\Omega \subseteq \mathbb{C}$, then

$$
\begin{align*}
& \mathcal{N}_{z}^{\nu}\left(\mathcal{N}_{z}^{\mu}\{f(z)\}\right)=\mathcal{N}_{z}^{\mu+\nu}\{f(z)\}=\mathcal{N}_{z}^{\mu}\left(\mathcal{N}_{z}^{\nu}\{f(z)\}\right) \tag{1.8}\\
& \left(\mathcal{N}_{z}^{\mu}\{f(z)\} \neq 0 ; \quad \mathcal{N}_{z}^{\nu}\{f(z)\} \neq 0 ; \quad \mu, \nu \in \mathbb{R} ; \quad z \in \Omega\right)
\end{align*}
$$

Lemma 3 (Generalized Leibniz Rule). If the functions $f(z)$ and $g(z)$ are single-valued and analytic in some domain $\Omega \subseteq \mathbb{C}$, then

$$
\begin{equation*}
\mathcal{N}_{z}^{\nu}\{f(z) \cdot g(z)\}=\sum_{n=0}^{\infty}\binom{\nu}{n} \mathcal{N}_{z}^{\nu-n}\{f(z)\} \cdot g^{(n)}(z) \quad(\nu \in \mathbb{R} ; z \in \Omega) \tag{1.9}
\end{equation*}
$$

where $g^{(n)}(z)$ is the ordinary dervvative of $g(z)$ of order $n\left(n \in \mathbb{N}_{0}:=\right.$ $\mathbb{N} \cup\{0\})$, , being tacitly assumed (for simphcity) that $g(z)$ is the polynomal part (if any) of the product $f(z) \cdot g(z)$.

Property 1. For constants c, λ, and ν,

$$
\begin{gather*}
\mathcal{N}_{z}^{\nu}\left\{(z-c)^{\lambda}\right\}=e^{-\imath \pi \nu \nu} \frac{\Gamma(\nu-\lambda)}{\Gamma(-\lambda)}(z-c)^{\lambda-\nu} \tag{1.10}\\
(\nu \in \mathbb{R} ; c, z \in \mathbb{C} ; c \neq z ;|\Gamma(\nu-\lambda) / \Gamma(-\lambda)|<\infty)
\end{gather*}
$$

Property 2. For constants c and ν,

$$
\begin{align*}
& \mathcal{N}_{z}^{-\nu}\left\{(z-c)^{-\nu}\right\}=-\frac{e^{\pi \pi \nu}}{\Gamma(\nu)} \log (z-c) \tag{1.11}\\
& (\nu \in \mathbb{R} ; c, z \in \mathbb{C} ; c \neq z ;|\Gamma(\nu)|<\infty)
\end{align*}
$$

Property 3. For constants c and ν,

$$
\begin{gather*}
\mathcal{N}_{z}^{\nu}\{\log (z-c)\}=-e^{-\imath \pi \nu} \Gamma(\nu)(z-c)^{-\nu} \tag{1.12}\\
(\nu \in \mathbb{R} ; c, z \in \mathbb{C} ; c \neq z ;|\Gamma(\nu)|<\infty)
\end{gather*}
$$

The main object of this sequel to the aforementioned recent works is to present yet another instance of applications of the fractional differintegral operator \mathcal{N}_{z}^{ν}. We also show how such infinite sums can be extended naturally to a family of analogous infinite sums involving the generalized hypergeometric ${ }_{p} F_{q}$ function with p numerator and q denominator parameters, defined by (cf. [3, Chapter 4])

$$
\begin{align*}
{ }_{p} F_{q}\left(\alpha_{1}, \ldots, \alpha_{p} ; \beta_{1}, \ldots, \beta_{q} ; z\right) & ={ }_{p} F_{q}\left[\begin{array}{cc}
\alpha_{1}, \ldots, \alpha_{p} ; & z \\
\beta_{1}, \ldots, \beta_{q} ;
\end{array}\right] \tag{1.13}\\
& :=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{p}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{q}\right)_{k}} \frac{z^{k}}{k!}
\end{align*}
$$

$$
\begin{gathered}
\left(p, q \in \mathbb{N}_{0} ; p \leqq q+1 ; p \leqq q \text { and }|z|<\infty\right. \\
p=q+1 \text { and }|z|<1 ; p=q+1,|z|=1, \text { and } \mathfrak{R}(\omega)>0)
\end{gathered}
$$

where (and $\imath n$ what follows) $(\lambda)_{k}$ denotes the Pochhammer symbol (or the shifted factorial, since $\left.(1)_{k}=k!\left(k \in \mathbb{N}_{0}\right)\right)$ given by

$$
(\lambda)_{k}:=\frac{\Gamma(\lambda+k)}{\Gamma(\lambda)}= \begin{cases}1 & (k=0 ; \lambda \neq 0) \tag{1.14}\\ \lambda(\lambda+1) \cdots(\lambda+k-1) & (k \in \mathbb{N})\end{cases}
$$

and

$$
\begin{equation*}
\omega:=\sum_{\jmath=1}^{q} \beta_{\jmath}-\sum_{\jmath=1}^{p} \alpha_{\jmath} \quad\left(\beta_{\jmath} \notin \mathbb{Z}_{0}^{-}:=\mathbb{Z}^{-} \cup\{0\} ; \jmath=1, \ldots, q\right) . \tag{1.15}
\end{equation*}
$$

Just as in some other earlier works (cf., e.g., [1], [2], [6], [13], [14], and $[18]$), we also indicate alternative derivations of these families of infinite sums wrthout using fractional calculus operators.

2. Applications of the Fractional Differintegral Operator

First of all, in view of the familiar expansion formula:

$$
\begin{equation*}
\log (1+z)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} z^{k} \quad(|z|<1) \tag{2.1}
\end{equation*}
$$

we readily obtain

$$
\begin{gather*}
\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{a-c}{z-c}\right)^{k}=\log \left(\frac{z-c}{z-a}\right) \tag{2.2}\\
(z, c, a \in \mathbb{C} ; z \neq c ; z \neq a ;|(a-c) /(z-c)|<1)
\end{gather*}
$$

Now we multiply both sides of (2.2) by $(z-b)^{m}\left(m \in \mathbb{N}_{0}\right)$ and operate upon each member of the resulting equation by the fractional differintegral operator \mathcal{N}_{z}^{ν}. Making use of the generalized Leibniz rule (1.9), we thus find that

$$
\sum_{k=1}^{\infty} \frac{(a-c)^{k}}{k} \sum_{l=0}^{m}\binom{\nu}{l} \mathcal{N}_{z}^{\nu-l}\left\{(z-c)^{-k}\right\} \mathcal{N}_{z}^{l}\left\{(z-b)^{m}\right\}
$$

$$
\begin{equation*}
=\sum_{l=0}^{m}\binom{\nu}{l} \mathcal{N}_{z}^{\nu-l}\left\{\log \left(\frac{z-c}{z-a}\right)\right\} \mathcal{N}_{z}^{l}\left\{(z-b)^{m}\right\} \tag{2.3}
\end{equation*}
$$

which, upon applying the fractional differintegral formulas (1.10) and (1.12), yields our first result in the form:

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{1}{k!}\left(\frac{a-c}{z-c}\right)^{k} \sum_{l=0}^{m}\binom{m}{l} \frac{(\nu-l)_{k}}{\nu-l}\left(-\frac{z-c}{z-b}\right)^{l} \\
= & \sum_{l=0}^{m}\binom{m}{l} \frac{1}{\nu-l}\left(-\frac{z-c}{z-b}\right)^{l}\left[\left(\frac{z-c}{z-a}\right)^{\nu-l}-1\right] \tag{2.4}
\end{align*}
$$

$$
\left(m \in \mathbb{N}_{0} ; z \neq a ; z \neq b ; z \neq c ;|(a-c) /(z-c)|<1 ; \nu \notin \mathbb{N}_{0}\right)
$$

Next, since [3, p. 102, Equation 2.8 (15)]

$$
\begin{equation*}
\log (1+z)=z{ }_{2} F_{1}(1,1 ; 2 ;-z) \tag{2.5}
\end{equation*}
$$

in terms of the Gauss hypergeometric function defined by (1.13) with, of course,

$$
p-1=q=1
$$

we consider the following immediate consequence of the definition (1.13):

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{\left(\alpha_{1}\right)_{k-1} \cdots\left(\alpha_{p}\right)_{k-1}}{(k-1)!\left(\beta_{1}\right)_{k-1} \cdots\left(\beta_{q}\right)_{k-1}}\left(\frac{a-c}{z-c}\right)^{\lambda+k} \\
= & \left(\frac{a-c}{z-c}\right)^{\lambda+1}{ }_{p} F_{q}\left[\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{p} ; a-c \\
\beta_{1}, \ldots, \beta_{q} ; \frac{z-c}{z-}
\end{array}\right] \quad(\lambda \in \mathbb{C}), \tag{2.6}
\end{align*}
$$

which, in the special case when

$$
\begin{equation*}
p-1=q=1 \quad\left(\alpha_{1}=\alpha_{2}=1 ; \beta_{1}=2\right) \quad \text { and } \quad \lambda=0 \tag{2.7}
\end{equation*}
$$

reduces at once to the expansion formula (2.2).

By appealing to the fractional differintegral formula (1.10) once again, it is fairly easy to show, for constants c, λ, and μ, that

$$
\begin{align*}
& \mathcal{N}_{z}^{\nu}\left\{(z-c)^{\lambda}{ }_{p} F_{q}\left[\begin{array}{l}
\alpha_{1}, \ldots, \alpha_{p} ; \\
\beta_{1}, \ldots, \beta_{q} ;
\end{array}{ }^{\prime}(z-c)\right]\right\} \\
& =e^{-\Omega \pi \nu} \frac{\Gamma(\nu-\lambda)}{\Gamma(-\lambda)}(z-c)^{\lambda-\nu}{ }_{p+1} F_{q+1}\left[\begin{array}{c}
\lambda+1, \alpha_{1}, \ldots, \alpha_{p} ; \\
\lambda-\nu+1, \beta_{1}, \ldots, \beta_{q} ;
\end{array} \mu(z-c)\right] \tag{2.8}
\end{align*}
$$

$\left(\nu \in \mathbb{R}, \mu, c, z \in \mathbb{C} ; c \neq z ;|\Gamma(\nu-\lambda) / \Gamma(-\lambda)|<\infty ; \lambda-\nu \notin \mathbb{Z}^{-}\right)$
and

$$
\begin{gather*}
\mathcal{N}_{z}^{\nu}\left\{(z-c)^{\lambda}{ }_{p} F_{q}\left[\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{p}, \frac{\mu}{\beta_{1}, \ldots, \beta_{q} ;} ; \overline{z-c}
\end{array}\right]\right\} \\
=e^{-\imath \pi \nu} \frac{\Gamma(\nu-\lambda)}{\Gamma(-\lambda)}(z-c)^{\lambda-\nu}{ }_{p+1} F_{q+1}\left[\begin{array}{c}
\nu-\lambda, \alpha_{1}, \ldots, \alpha_{p} ; \frac{\mu}{-\lambda, \beta_{1}, \ldots, \beta_{q} ;} \overline{z-c}
\end{array}\right] \tag{2.9}
\end{gather*}
$$

$\left(\nu \in \mathbb{R} ; \mu, c, z \in \mathbb{C} ; c \neq z ;|\Gamma(\nu-\lambda) / \Gamma(-\lambda)|<\infty ; \lambda \notin \mathbb{N}_{0}\right)$.
The above-detailed method of derivation of the summation formula (2.4) via the fractional differintegral operator \mathcal{N}_{z}^{ν} can be applied $m u$ tatis mutandus, using (2.6) and (2.9) instead of (2.2) and (1.12), respectively, in order to obtain the following generalzation of the summation formula (2.4):

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{\left(\alpha_{1}\right)_{k-1} \cdots\left(\alpha_{p}\right)_{k-1}}{(k-1)!(\lambda+1)_{k-1}\left(\beta_{1}\right)_{k-1} \cdots\left(\beta_{q}\right)_{k-1}}\left(\frac{a-c}{z-c}\right)^{k} \\
\cdot \sum_{l=0}^{m}\binom{m}{l} \frac{(\nu-l)_{\lambda+k}}{\nu-l}\left(-\frac{z-c}{z-b}\right)^{l} \\
=\frac{a-c}{z-c} \sum_{l=0}^{m}\binom{m}{l}(\nu-l+1)_{\lambda}\left(-\frac{z-c}{z-b}\right)^{l}
\end{gathered}
$$

$$
{ }_{p+1} F_{q+1}\left[\begin{array}{r}
\nu+\lambda-l+1, \alpha_{1}, \ldots, \alpha_{p} ; a-c \tag{2.10}\\
\lambda+1, \beta_{1}, \ldots, \beta_{q} ; \overline{z-c}
\end{array}\right]
$$

$\left(m \in \mathbb{N}_{0} ; z \neq a ; z \neq b ; z \neq c ;|(a-c) /(z-c)|<1 ; \nu \notin \mathbb{N}_{0} ; \lambda \notin \mathbb{Z}^{-}\right)$.
In its special case when the constraints in (2.7) are satisfied, the summation formula (2.10) would reduce to (2.4), since [17, p. 462, Entry 7.3.1.125]

$$
\begin{gather*}
{ }_{2} F_{1}(1, b ; 2 ; z)=\frac{1}{(b-1) z}\left[(1-z)^{1-b}-1\right] \tag{2.11}\\
(b \neq 1 ; 0<|z|<1)
\end{gather*}
$$

On the other hand, by applying (2.11) as well as the Chu-Vandermonde theorem [17, p. 489, Entry 7.3.5.4]:

$$
\begin{equation*}
{ }_{2} F_{1}(-n, b ; c ; 1)=\frac{(c-b)_{n}}{(c)_{n}} \quad\left(n \in \mathbb{N}_{0} ; c \notin \mathbb{Z}_{0}^{-}\right) \tag{2.12}
\end{equation*}
$$

the simpler summation formula (2.4) with

$$
\begin{equation*}
b=c \quad \text { and } \quad \nu=m+1 \quad(\text { and } \quad m \longmapsto n) \tag{2.13}
\end{equation*}
$$

yields the sum:

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}(k-1) \cdots(k-n)\left(\frac{a-c}{z-c}\right)^{k}=n!\left(\frac{a-c}{z-a}\right)^{n+1} \tag{2.14}
\end{equation*}
$$

which can indeed be proven directly by first letting $k \longmapsto k+n+1$ ($n, k \in \mathbb{N}_{0}$) and then using the binomial expansion:
${ }_{1} F_{0}(\lambda ;-z)=\sum_{k=0}^{\infty} \frac{(\lambda)_{k}}{k!} z^{k}=(1-z)^{-\lambda} \quad(\lambda \in \mathbb{C} ;|z|<1)$.

We choose to leave, as an exercise for the interested reader, each of the aforementioned derivations of (214) directly and as a special case of the summation formula (2.4) under the constraints given by (2.13).

3. Remarks and Observations

A closer examination of each of the summation formulas (2.4) and (2.10) would reveal the fact that these results can be derived alternatively (and more simply) without using the fractional differintegral operator \mathcal{N}_{z}^{ν}. While the summation formula (2.4) is a rather straightforward consequence of the binomial expansion (2.15) in its equivalent form:

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(\lambda)_{k}}{k!} z^{k}=(1-z)^{-\lambda}-1 \quad(\lambda \in \mathbb{C} ; \quad|z|<1) \tag{3.1}
\end{equation*}
$$

the general result (2.10) is derivable directly from the definition (1.13). As a matter of fact, for suitably bounded single and double sequences $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{m, n}\right\}_{m, n=0}^{\infty}$ of essentially arbitrary real or complex parameters, we readily obtain

$$
\begin{align*}
& \sum_{k=1}^{\infty} A_{k-1}\left(\frac{a-c}{z-c}\right)^{k} \sum_{l=0}^{m}\binom{m}{l} \frac{(\nu-1)_{\lambda+k}}{\nu-1} B_{k, l}\left(-\frac{z-c}{z-b}\right)^{l} \\
&= \frac{a-c}{z-c} \sum_{l=0}^{m}\binom{m}{l}(\nu-l+1)_{\lambda}\left(-\frac{z-c}{z-b}\right)^{l} \\
& \cdot \sum_{k=0}^{\infty}(\nu+\lambda-l+1)_{k} A_{k} B_{k+1, l}\left(\frac{a-c}{z-c}\right)^{k} \tag{3.2}\\
&\left(m \in \mathbb{N}_{0} ; z \neq a ; z \neq b ; \quad z \neq c ;|(a-c) /(z-c)|<1 ; \nu \notin \mathbb{N}_{0}\right),
\end{align*}
$$

provided that each member of (3.2) exists.
The summation formula (2.4) follows immediately from (3.2) when we set

$$
\begin{equation*}
A_{k}=\frac{1}{k+1} \quad\left(k \in \mathbb{N}_{0}\right), \quad B_{m, n}=1 \quad\left(m, n \in \mathbb{N}_{0}\right), \quad \text { and } \quad \lambda=0, \tag{3.3}
\end{equation*}
$$

and apply the reduction formula (2.11) on the right-hand side of (3.2). In order to deduce the summation formula (2.10) as a special case of (3.2), we simply set

$$
\begin{equation*}
A_{k}=\frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{p}\right)_{k}}{k!(\lambda+1)_{k}\left(\beta_{1}\right)_{k} \cdots\left(\beta_{q}\right)_{k}}\left(k \in \mathbb{N}_{0}\right) \text { and } B_{m, n}=1\left(m, n \in \mathbb{N}_{0}\right) \tag{3.4}
\end{equation*}
$$

and appeal to the definition (1.13) on the right-hand side of (3.2).
Next we recall the following known reduction formula for a generalized hypergeometric function defined by (1.13) [17, p. 572, Entry 7.10.1.1]:

$$
\begin{gather*}
{ }_{r+1} F_{r}\left[\begin{array}{r}
\lambda, \mu_{1}, \ldots, \mu_{r} ; \\
\mu_{1}+1, \ldots, \mu_{r}+1 ;
\end{array}\right]=\sum_{k=1}^{r}{ }_{2} F_{1}\left(\lambda, \mu_{k} ; \mu_{k}+1 ; z\right) \\
\cdot \prod_{\jmath=1(\jmath \neq k)}^{r}\left\{\frac{\mu_{\jmath}}{\mu_{j}-\mu_{k}}\right\} \tag{3.5}\\
\left(\mu_{\jmath} \notin \mathbb{Z}_{0}^{-} ; \mu_{\jmath} \neq \mu_{k} ; \jmath \neq k ; j, k=1, \ldots, r ;|z|<1\right)
\end{gather*}
$$

For the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined by (cf. [3, p. 27, Equation 1.11 (1)]; see also [20, p. 121, Equation 2.5 (1)])

$$
\begin{equation*}
\Phi(z, s, a):=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+a)^{s}} \tag{3.6}
\end{equation*}
$$

$\left(a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C}\right.$ when $|z|<1 ; \mathfrak{R}(s)>1$ when $\left.|z|=1\right)$, it is easily observed that [20, p. 123, Equation 2.5 (16)]

$$
\begin{equation*}
\Phi(z, 1, a)=a^{-1}{ }_{2} F_{1}(1, a ; a+1 ; z) \quad(|z|<1) . \tag{3.7}
\end{equation*}
$$

Thus, in its special case when $\lambda=1$, the reduction formula (3.5) assumes the form:

$$
{ }_{r+1} F_{r}\left[\begin{array}{r}
1, \mu_{1}, \ldots, \mu_{r} ; \\
\mu_{1}+1, \ldots, \mu_{r}+1 ;
\end{array}\right]=\left(\mu_{1} \cdots \mu_{r}\right) \sum_{k=1}^{r} \Phi\left(z, 1, \mu_{k}\right)
$$

$$
\begin{gather*}
\prod_{j=1}^{r}\left\{\left(\mu_{j}-\mu_{k}\right)^{-1}\right\} \tag{3.7}\\
\left(\mu_{j} \notin \mathbb{Z}_{0}^{-} ; \mu_{3} \neq \mu_{k} ; j \neq k ; j, k=1, \ldots, r ;|z|<1\right),
\end{gather*}
$$

which, for $\mu_{j} \longmapsto \mu_{j}+1(\jmath=1, ., r)$, immediately yields

$$
\begin{gather*}
\sum_{k=1}^{\infty} \frac{z^{k-1}}{\left(k+\mu_{1}\right) \cdots\left(k+\mu_{r}\right)}=\sum_{k=1}^{r} \Phi\left(z, 1, \mu_{k}+1\right) \prod_{j=1(\jmath \neq k)}^{r}\left\{\left(\mu_{j}-\mu_{k}\right)^{-1}\right\} \\
\left(\mu_{j} \notin \mathbb{Z}^{-} ; \mu_{j} \neq \mu_{k} ; j \neq k ; j, k=1, \ldots, r,|z|<1\right) \tag{3.8}
\end{gather*}
$$

In particular, since [17, p. 463, Entry 7.3.1.135]

$$
\begin{equation*}
{ }_{2} F_{1}(1, n ; n+1 ; z)=-\frac{n}{z^{n}}\left(\log (1-z)+\sum_{k=1}^{n-1} \frac{z^{k}}{k}\right) \quad(n \in \mathbb{N} ;|z|<1) \tag{3.9}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\Phi(z, 1, n)=-\frac{1}{z^{n}}\left(\log (1-z)+\sum_{k=1}^{n-1} \frac{z^{k}}{k}\right) \quad(n \in \mathbb{N} ;|z|<1) \tag{3.10}
\end{equation*}
$$

each of which corresponds (for $n=1$) to the familiar relationship (2.5), upon setting

$$
\mu_{j}=m_{\jmath} \quad\left(m_{\jmath} \in \mathbb{N}_{0} ; \jmath=1, \ldots, r\right)
$$

in the summation formula (3.8), we get

$$
\begin{gather*}
\sum_{k=1}^{\infty} \frac{z^{k}}{\left(k+m_{1}\right) \cdots\left(k+m_{r}\right)}=-\sum_{k=1}^{r} z^{-m_{k}}\left(\log (1-z)+\sum_{l=1}^{m_{k}} \frac{z^{l}}{l}\right) \\
\cdot \prod_{\jmath=1(\jmath \neq k)}^{r}\left\{\left(m_{\jmath}-m_{k}\right)^{-1}\right\} \tag{3.11}\\
\left(m_{\jmath} \in \mathbb{N}_{0} ; m_{\jmath} \neq m_{k} ; j \neq k ; \jmath, k=1, \ldots, r ;|z|<1\right)
\end{gather*}
$$

By appealing to the easily verifiable identities (3.9) and (3.10), the summation formula (3.11) can be proven darectly in a rather elementary way. In much more general settings, the case $z=1$ of the infinite series occurring on the left-hand side of (3.11) was considered earlier by AlSaqabi et al. [1] and Wu et al. [24] (see also Aular de Durán et al. [2]). Furthermore, if in (3.11) we set

$$
r=n+1 \quad \text { and } \quad m_{j}=j-1 \quad(j=1, \ldots, n+1),
$$

and multiply each side of the resulting equation by z^{n}, we obtain

$$
\begin{gather*}
\sum_{k=1}^{\infty} \frac{z^{k+n}}{k(k+1) \cdots(k+n)}=-\sum_{k=1}^{n+1} z^{n-k+1}\left(\log (1-z)+\sum_{l=1}^{k-1} \frac{z^{l}}{l}\right) \\
\cdot \prod_{\jmath=1(\jmath \neq k)}^{n+1}\left\{(j-k)^{-1}\right\} \quad\left(n \in \mathbb{N}_{0} ;|z|<1\right), \tag{3.12}
\end{gather*}
$$

which provides a virtually simpler version of the main result in a recent paper by Tu et al. [22, p. 6, Theorem 2]. Closed-form expressions for infinite series of the type occurring in (3.12) can also be found to be listed by Hansen [4, p. 174].

Finally, we remark that some interesting extensions of the straightforward consequence (2.14) of the binomial expansion (2.15), especially when $n=2$ and $n=3$, were derived recently by Wang et al. [23] via the fractional differintegral operator \mathcal{N}_{z}^{ν} in a manner which we have already illustrated fairly adequately in the preceding section.

Acknowledgements

The present investigation was initiated and finalized during the third-named author's visits to Chung Yuan Christian University at Chung-Li in August 2001 and March 2002, respectively. This work was supported, in part, by the National Science Council of the Republuc of China, the Faculty Research Program of Chung Yuan Christaan Unversity, and the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

References

[1] B N. Al-Saqabs, S L. Kalla, and H M Srivastava, A certann family of anfinite series assoczated with Diganma functions, J Math Anal Appl 159 (1991), 361-372
[2] J Aular de Durán, S L Kalla, and H.M. Srivastava, Fractional calculus and the sums of certain families of infinite series, \mathfrak{J} Math Anal Appl 190 (1995), 738-754
[3] A. Erdélyı, W. Magnus, F. Oberhettinger, and F G Tricomi, Hıgher Transcendental Functzons, Vol. I, McGraw-Hill Book Company, New York, Toronto, and London, 1953
[4] E R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Chffs, New Jersey, 1975
[5] R. Hilfer (Editor), Applicatzons of Fractional Calculus in Physics, World Scientıfic Publishing Company, Singapore, New Jersey, London, and Hong Kong, 2000.
[6] S -D. Lin, S.-T. Tu, and H M Srivastava, Certann classes of infinite sums evaluated by means of fractonal calculus operators, Taiwanese J. Math 6 (2002)
[7] K.S Miller and B Ross, An Introduction to the Fractional Calculus and Fractional Dufferential Equations, A John Wiley-Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, and Singapore, 1993.
[8] K Nishimoto, Fractronal Calculus, Vols. I, II, III, IV, and V, Descartes Press, Korıyama, 1984, 1987, 1989, 1991, and 1996
[9] K Nishımoto, An Essence of Nishimoto's Fractronal Calculus (Calculus of the 21 st Century). Integrations and Differentiations of Arbutrary Order, Descartes Press, Koriyama, 1991
[10] K Nishimoto, On some infinte sums obtaned by N-fractional calculus, J Fract Calc 20 (2001), 1-6
[11] K Nishmoto, I-C. Chen, and S-T Tu, Some famizes of infinzte series summable by means of fractzonal calculus, Tawanese J. Math. 6 (2002).
[12] K. Nishimoto, D-K. Chyan, S-D Lin, and S.-T Tu, On some infinate sums derzved by N-fractıonal calculus, J Fract. Calc 20 (2001), 91-97
[13] K. Nıshimoto, T. Sekine, and H.M Srivastava, Some families of anfinate serves summable by means of fractional calculus, J College Engrg Nihon Univ Ser B 33 (1992), 1-8
[14] K. Nishmoto and H M Srivastava, Certain classes of infinite serves summable by means of fractional calculus, J College Engrg Nihon Univ. Ser B 30 (1989), 97-106.
[15] K.B. Oldham and J. Spanier, The Fractional Calculus Theory and Applicatzons of Differentration and Integration to Arbitrary Order, Mathematics in Science and Engmeering, Vol 111, Academic Press, New York and London, 1974.
[16] I. Podlubny, Fractional Dufferential Equations. An Introduction to Fractıonal Derivatzves, Fractional Differentzal Equations, to Methods of Their Solution and Some of Therr Applications, Mathematics in Science and Engineering, Vol. 198, Academic Press, New York, London, Tokyo, and Toronto, 1999.
[17] A.P. Prudnikov, Yu. A. Bryc̄kov, and O.I Maričev, Integrals and Serıes (Supplementary Chapters), "Nauka," Moscow, 1986 (in Russian); see also Integrals and Series, Vol. 2: Spectal Functions (Translated from the Russian by N.M. Queen), Second Edition, Gordon and Breach Science Publishers, New York, 1988.
[18] S. Salinas de Romero and H M. Srivastava, Some familzes of infintte sums dertved by means of fractional calculus, East Asian Math. J 17 (2001), 135146.
[19] S.G. Samko, A.A Kılbas, and O.I. Marıchev, Integrals and Derivatives of Fractional Order and Some of Their Apphcations, "Nauka : Tekhnika," Minsk, 1987 (in Russian); English translation Fractional Integrals and Dervatives. Theory and Applications, Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin, and Langhorne (Pennsylvania), 1993
[20] H M. Srivastava and J. Choi, Serves Assoczated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, and London, 2001
[21] H.M. Srivastava, S Owa, and K. Nishimoto, Some fractıonal differintegral equations, J. Math Anal. Appl. 106 (1985), 360-366.
[22] S.-T. Tu, I-C. Chen, and P.-Y Wang, A certain family of infinite sums vza fractional calculus, Chung Yuan J. 29 (2001), 5-8.
[23] P.-Y. Wang, T-C Wu, and S.-T. Tu, Some infinte sums via N-fractional calculus, J. Fract. Calc. 21 (2002), 71-77
[23] T.-C. Wu, S.-H. Leu, S.-T. Tu, and H.M. Srivastava, A certain class of infinite series assocıated with Digamma functions, Appl. Math. Comput. 105 (1999), 1-9.

Shih-Tong Tu
Department of Mathematics
Chung Yuan Christian University
Chung-Li 32023, Taiwan
Republic of China
E-Mail: sttu@math.cycu.edu.tw

Pin-Yu Wang
Department of Mechanical Engineering
Nan-Ya Institute of Technology
Chung-Li 32023, Taiwan
Republic of China
E-Mall: pinyu@nanya.edu.tw
H.M. Srivastava
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4
Canada
E-Mal: harimsri@math.uvic.ca

[^0]: Received Aprıl 15, 2002
 2000 Mathematics Subject Classification Primary 26A33, 33C20, Secondary 33B15

 Key words and phrases. fractional calculus, infinite series, Riemann-Lıouville operator, fractional dersvative, fractional integral, generalized Lerbntz rule, hypergeometric functions, expansion formula, reduction formula, fractional differintegral operators, Hurwitz-Lerch Zeta function, summation formulas

