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SOME FAMILIES OF INFINITE SERIES SUMMABLE 
VIA FRACTIONAL CALCULUS OPERATORS

Shih-Tong Tu, Pin-Yu Wang and H. M. Srivastava

Abstract. Many different families of infinite series were recently ob

served to be summable in closed forms by means of certain operators 

of fractional calculus (that is, calculus of integrals and derivatives of 

any arbitrary real or complex order). In this sequel to some of these 

recent investigations, the authors present yet another instance of ap

plications of certain fractional calculus operators Alternative deriva

tions without using these fractional calculus operators are shown to 

lead naturally a family of analogous infinite sums involving hypergeo

metric functions

1. Introduction and Definitions

The subject of fractional calculus (that is, calculus of integrals and 

derivatives of any arbitrary real or complex o호der) has gained consid

erable importance and popularity during the past three decades or so, 

due mainly to its demonstrated applications in many seemingly diverse 

fields of science and engineering (see, for details, [5], [7], and [16]). Var

ious operators of fractional calculus are indeed found to be useful in
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such areas of mathematical analysis as (for example) ordinary and par

tial differential equations, integral equations, summation of series, et 

cetera.

One of the most frequently encountered tools in the theory and ap

plications of fractional calculus is furnished by the Riemann-Liouville 

fractional diffenntegral (that is, fractional derivative and fractional in

tegral) operator D£ of order 国 defined by (c/, [15], [16], and [19])

：= / HF J。(Z - 沪广 /(<)« ㈣ 3)< °)

Z I 厂m{/(z)} (m-1^ 攻(司 <m;m€ N),

(1-1) 

provided that the integral in (1.1) exists, N being (as usual) the set 

of positive integers. In many recent works (see, for example, [10], [11], 

[12], [22], and [23]), dealing with the summation of series by means of 

fractional calculus, an essentially equivalent differintegral operator 丿V： 

(i/ E R) was employed fairly successfully. We choose first to recall here 

the definition of this fractional differintegral operator N； as follows:

Definition (c/ [8], [9], and [21]). If the function f(z) is analytic 

(regular) inside and on C, where

C：= {C-,C+},

C~ is a contour along the cut joining the points z and —oo + 

which starts from the point at —oo, encircles the point z once counter

clockwise, and returns to the point at —oo, is a contour along the 

cut joining the points z and oo + which starts from the point 

at oo, encircles the point z once counter-clockwise, and returns to the 

point at oo,

MP⑵｝：=將^ I点鈿de

(p e R\Z_; Z- ：= (-1,-2, -3,...}) (1-2)

and

”/{/(z)} := lim (忠{/(z)}) (n G N), (L3)
p—n
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where < 供 z,

一穴 W arg(< — z) $ 7F for C~, (L4)

and

0 W arg(C 一 z)冬 2?r for C+, (1.5)

then 人/:{/(z)} (z/ > 0) is said to be the fractional derivative of f (z) 

of order v and 丿\/了 (/ (z)} (p < 0) is said to be the fractional integral 

of f (z) of order —匕 provided that

I人。{/(z)}| < 8 G R). (1-6)

For the sake of completeness and ready reference, we find it to be 

worthwhile also to recall here each of the following potentially use

ful lemmas and properties associated with the fractional differintegral 

operator N； which is defined above (see, for details. [8] and [9]).

Lemma 1 (Linearity Property). If the functions /(^) and g{z) are 

single-valued and amalytic m some domain Q C C; then

忠{幻/ (z) + k2g (z)} = {f (z)}+畑丿V； {g ⑵} (p e R； z e fi)

(L7) 

for any constants ki and k》.

Lemma 2 (Index Law). If the function f (z) is single-valued and 

analytic m some domain Q 으 C, then

態 « {f ⑵})=喚{f (z)}=戒(忠{f (z)}) (1.8)

(昭{T(Z)}尹 0;忠{了 (z)}尹 0; Al, 1/ e R; zfQ).

Lemma 3 (Generalized Leibniz Rule). If the functions f (z) and 

g (z) are single-valued and analytic in some domain Q 으 C, then

(u C R.; z C Q),

(1.9)
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where (z) is the ordinary derivative of g (z) of order n (n G No ：= 

N U {0})3 it being tacitly assumed (for simplicity) that g (z) is the poly

nomial part (矿 any) of the product / (z) • g (z).

Property 1. For constants c, A, and 匕

N《 {(Z - C)A} = e-g ¥奇)(Z - c)수“ (1.10)

(y G R; c, z € C; c 구4 z; |r (〃 一 A) /r (—A)| < co).

Property 2. For constants c and p,

N/脳-c)T?= 一嘉 log (Z — c) (1.11)

(p G R; c, z € C; c 尹 z; |r (〃)| < oo).

Property 3. For constants c and p,

况 {log (z - c)} = —广찌，r (〃) (z — c)2 (1.12)

(p € R; c, z € C; c N z； |r (p)| < CQ).

The main object of this sequel to the aforementioned recent works 

is to present yet another instance of applications of the fractional dif- 

ferintegral operator N；、We also show how such infinite sums can be 

extended naturally to a family of analogous infinite sums involving 

the generalized hypergeometric pFq function with p numerator and q 

denominator parameters, defined by (cf [3, Chapter 4])

pFq{pL\^ * . . , Ol.p \ 魚,• • • , Z)= pFq z
8，)• , ' )Bq； , 

一宁' (Q])k .・.2% 
* J)(J3]•、底…(6q)k k\

(1-13)
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(饱 q £ No；? w g + 1； pWq and |z| < OO；

p = q + 1 and \z\ < 1; p = g + 1, |히 = 1, and 洸(3)> 0), 

where (and tn what follows) (A)^ denotes the Pochhammer symbol (or 

the shifted factorial, since (1)北=k\ (k e No)) given by

(人)r(A + fc) _ f 1 (k = 0;入尹 0)
')k L ~T(A)-[入(入 + 1)...(人 + & — 1) (E N)

(1.14) 

and

q p

Oi3 (禺 £ Zj :=*-U {0}; j = 1,... ,q). (1.15)

J=1 J=1

Just as in some other earlier works (c/., e.g., [1], [2], [6], [13], [14], 

and [18]), we also indicate alternative derivations of these families of 

infinite sums imthout using fractional calculus operators.

2. Applications of the Fractional Differintegral Operator

First of all, in view of the familiar expansion formula:

log (1 + z) = £ -1—一 / (I히 < 1), 

k~l

(2.1)

we readily obtain

(2-2)

(z, c, a € C; z 尹 c; z 尹 a; |(a — c) / (z — c)| < 1).

Now we multiply both sides of (2.2) by (z — b)m (m E No) and operate 

upon each member of the resulting equation by the fractional diflferin- 

tegral operator N1，Making use of the generalized Leibniz rule (1.9), 

we thus find that

£ (으書 E * - c)*"! {(z - bn
k=L Z=0 ')
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771
M{(z —bn， (2.3)

l=Q

which, upon applying the fractional differintegral formulas (1.10) and 

(1.12), yields our first result in the form:

z — c 

z — b

(“ 一 l、)k 

v — I

(2-4)

(m G No； z 尹 Q； z 尹如 z 尹 c; |(a - c) / (z - c)| < 1; u《No).

Next, since [3, p. 102, Equation 2.8 (15)]

log (丄 + 2)= 2 弟(1, 1； 2； -z) (25)

in terms of the Gauss hypergeometric function defined by (1.13) with, 

of course,

但一 1 = g = 1,

we consider the following immediate consequence of the definition (1.13): 

V， (。고)k—i，(Qp)fc-i f 으二f ) A+A：
—1)! 01)卜1 …(偽) fc—i I z -。丿

which, in the special case when

p — 1 = q = 1 (% = a? = 1； 01 = 2) and A = 0, 

(2-6)

(2-7)

reduces at once to the expansion formula (2.2).
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By appealing to the fractional differintegral formula (1.10) once 

again, it is fairiy easy to show, for constants c, A, and /i, that

丿修仏-C)A pFq

and

PQ —시 

r(-A)

G R, /i, c, 2 6 C; c 丰 z\

„ A H-1, cej ,... , ot-p,
p+1%+1 、 ，1 q "(Z — C)

入—，+ 1, pi, • . . , Pg,

(2-8)

|r (z^ — A) /r (—A)| < oo; A — z/ z )

=e~lKV (z -疔“

叫(Z _ C广 pFq

= L" 譬그)(2 - c)i p+1%+1

1 (一入丿

U —人)Q]”...，,卩，

-人 K ... , Bq； Z — C
(2-9)

(1/GR; c, Z C(C; c N z; |r(P 一 A) /r (—시] < oo; A No).

The above-detailed method of derivation of the summation formula 

(2.4) via the fractional differintegral operator N； can be applied mu- 

tatis mutandzs^ using (2.6) and (2.9) instead of (2.2) and (1.12), respec

tively, in order to obtain the following generalization of the summation 

formula (2.4)：

(ai)fc-r,-(Q:p)fc i8
£ 0 - 1)! (A + 1)卜1 (/3i) k-1.'. wk-1

±k
V 一 I

z ~ c 

z — b

z ~ c

a — c z 一 c

z — b
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(2.10)p+l^q+1
+ A — Z + 1,, Qp； a — c

人 + LM ..•用q； Z — C

(m G No； z 구4 Q； z 尹 b; z 尹 c; |(a — c) / (z — c)| < 1; v No； A 牛 Z~) .

In its special case when the constraints in (2.7) are satisfied, the 

summation formula (2.10) would reduce to (2.4), since [17, p. 462, 

Entry 7.3丄 12티

1
2Fi(l,b;2;z) = &二])£ (2.11)

(b 尹 1; 0 < I 히 < 1) .

On the other hand, by applying (2.11) as well as the Chu-Vandermonde 

theorem [17, p. 489, Entry 7.3.5.4]:

2^1 (-n,如 c; 1) = (n € No； c 申 Z氣、)、 

the simpler summation formula (2.4) with

b = c and y — m + 1 (and m i——> n)

(2.12)

(2.13)

yields the sum:

oo
$2 a-】)•••(&•『)

k
=n! (2.14)

(n G No; z / c; / a),

which can indeed be proven directly by first letting k i一一> 
(n, k € No) and then using the binomial expansion:

k + n + 1

i-Fb (入; 一； z) ="J z* = (1 -• z) * (A € C; I히 < 1) . (2.15)

fc=0
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We choose to leave, as an exercise for the interested reader, each of the 

aforementioned derivations of (2 14) directly and as a special case of 

the summation formula (2.4) under the constraints given by (2.13).

3. Remarks and Observations

A closer examination of each of the summation formulas (2.4) and 

(2.10) would reveal the fact that these results can be derived alter

natively (and more simply) without using the fractional differintegral 

operator 人。. While the summation formula (2.4) is a rather straight

forward consequence of the binomial expansion (2.15) in its equivalent 

form:

zk = (1 — z) A — 1 (A G C; I히 < 1), (3-1)
_ fV •
k=l

the general result (2.10) is derivable directly from the definition (1.13). 

As amatrer of fact, for suitably bounded single and double sequences 

(An}^L0 and n=0 of essentially arbitrary real or complex pa

rameters, we readily obtain

(〃 - 1)入卄 
u ~ 1

z - c\

k
(3-2)

a - c (즈、(rn\ z , ( z — c

OO
, E (“+入T+1%瓦:风+侦 

fc=0

(m G No； z 供 a; z N b； z 供 c; |(a - c) / (z - c)| < 1; u 牛 No),

provided that each member of (3.2) exists.

The summation formula (2.4) follows immediately from (3.2) when 

we set

Ak = -i- (k € No), Bm)n = 1 (m,neN0), and 人=0, 

fc + 1
(3-3)
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and apply the reduction formula (2.11) on the right-hand side of (3.2). 

In order to deduce the summation formula (2.10) as a special case of 

(3.2), we simply set 

(al)fc • • • (ap)fc
Ak = kl (A + lM^i)fc-Wfc ° € N。) and Bm,n = ' (m,亦 No) ‘ 

(3-4)

and appeal to the definition (1.13) on the right-hand side of (3.2).

Next we recall the following known reduction formula for a gener

alized hypergeometric function defined by (1.13) [17, p. 572, Entry 

7.10.1.1]:

r-^\Fr
人｝ /妇，• • ■ 5 卩W、； 

z 
p-1 + 1, + 1;

r
=〉:2-^1 (入〉四;Kk + 1； Z) 

k=l

r r

n(
아:) k

卩지
卩3 —卩k

(3.5)

(Mj《 為o ； 丰 四; J 尹 %; 项)& = L • . • I히 v 1) .

For the Hurwitz-Lerch Zeta function $ (z, s, d) defined by (c/ [3, p. 

27, Equation 1.11 (1)]; see also [20, p. 121, Equation 2.5 (1)])

8 K
(3-6)

(a 6 C\Zq ; s € C when \z\ < 1; 91(s) > 1 when \z\ = 1), 

it is easily observed that [20, p. 123, Equation 2.5 (16)]

①(z, = 2Fi (l,a;a + (|히 V 1) . (3.7)

Thus, in its special case when A — 1, the reduction formula (3.5) as

sumes the form:

r+iFr [ :的...妇立鱼⑵顿)

Ml + • - , Mr + 1； 化=1
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n {(灼-(3.7)

(MJ t ； 的 N Mfc；，手 k; j,k = 1,... ,r; |히 < 1) , 

which, for 甘顶 i一一> /妇 + 1 (j = 1〉 . ,r), immediately yields

8 k—1 r r
£(#+内)...(人；+妇=『(z,mi)n {(所-四广} 

k=l ' 3 ' S fc=l J = 10 孙)
_ (3-8)

(灼 i 而 丰 Mfc； 讦 虹、j,k = l,... ,r, I히 < 1) .

In particular, since [17, p. 463, Entry 7.3丄 13티

7Z
2F】(im；n + i；z) = —冢 (n e N; I 히 V 1)

(3.9)
or, equivalently,

(n e N; I히 < 1), (3.10)

each of which corresponds (for n = 1) to the familiar relationship (2.5), 

upon setting

旳=m3 (m3 e No； J = 1,... ,r)

in the summation formula (3.8), we get

°。 a； r ( \S(imL+叫)=一 8 广”vog(")+W J

r• JJ - (3.H)

(m3 e No； m3 丰 mk-, j k] = ,r\ \z\ < 1).
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By appealing to the easily verifiable identities (3.9) and (3.10), the 

summation formula (3.11) can be proven directly in a rather elementary 

way. In much more general settings, the case z = 1 of the infinite series 

occurring on the left-hand side of (3.11) was considered earlier by Al- 

Saqabi et al. [1] and Wu et aL [24] (see also Aular de Duran et aL [2]). 

Furthermore, if in (3.11) we set

r = n + 1 and mj = j ~ 1 (J = 1,... , n + 1), 

and multiply each side of the resulting equation by z气 we obtain

8 k+n 1나 1 ( k—l /\£ gi)-(5 =—R z+i (風(")+

n-fl
. n {(顶 T广} 团 <1), (3M)

J=L(J 구이c)

which provides a virtually simpler version of the main result in a recent 

paper by Tu et al. [22, p. 6, Theorem 2]. Closed-form expressions for 

infinite series of the type occurring in (3.12) can also be found to be 

listed by Hansen [4, p. 174].

Finally, we remark that some interesting extensions of the straight

forward consequence (2.14) of the binomial expansion (2.15), especially 

when n = 2 and n = 3, were derived recently by Wang et aL [23] via 

the fractional differintegral operator in a manner which we have 

already illustrated fairly adequately in the preceding section.
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