• 제목/요약/키워드: four-point probe

검색결과 243건 처리시간 0.023초

전해액 조성에 의한 구리 박막의 표면형상과 물성변화 (Effect of Electrolyte Compositions on the Physical Property and Surface Morphology of Copper Foil)

  • 우태규;박일송;전우용;박은광;정광희;이현우;이만형;설경원
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.951-956
    • /
    • 2010
  • This study examined the effect of copper and sulfuric acid concentrations on the surface morphology and physical properties of copper plated on a polyimide (PI) film. Electrochemical experiments with SEM and a four-point probe were performed to characterize the morphology and mechanical characteristics of copper electrodeposited in the composition of an electrolyte. The resistivity and peel strength were controlled using a range of electrolyte compositions. A lower resistivity and high flexibility were obtained when an electrolyte with 20 g/l of copper was used. However, a uniform surface was obtained when a high current density that exceeded $20mA/cm^2$ was applied, which was maintained at copper concentrations exceeding 40 g/l. Increasing sulfuric acid to >150 g/l decreased the peel strength and flexibility. The lowest resistivity and fine adhesion were detected at a $Cu^{2+}:H_2SO_4$ ratio of 50:100 g/l.

저온 ICP-CVD 공정으로 제조된 나노급 실리콘 박막의 물성 (Property of Nano-thick Silicon Films Fabricated by Low Temperature Inductively Coupled Plasma Chemical Vapor Deposition Process)

  • 신운;심갑섭;최용윤;송오성
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.313-320
    • /
    • 2011
  • 100 nm-thick hydrogenated amorphous silicon $({\alpha}-Si:H)$ films were deposited on a glass and glass/30 nm Ni substrates by inductively-coupled plasma chemical vapor deposition (ICP-CVD) at temperatures ranging from 100 to $550^{\circ}C$. The sheet resistance, microstructure, phase transformation and surface roughness of the films were characterized using a four-point probe, AFM (atomic force microscope), TEM (transmission electron microscope), AES (Auger electron spectroscopy), HR-XRD(high resolution X-ray diffraction), and micro-Raman spectroscopy. A nano-thick NiSi phase was formed at substrate temperatures >$400^{\circ}C$. AFM confirmed that the surface roughness did not change as the substrate temperature increased, but it increased abruptly to 6.6 nm above $400^{\circ}C$ on the glass/30 nm Ni substrates. HR-XRD and micro-Raman spectroscopy showed that all the Si samples were amorphous on the glass substrates, whereas crystalline silicon appeared at $550^{\circ}C$ on the glass/30 nm Ni substrates. These results show that crystalline NiSi and Si can be prepared simultaneously on Ni-inserted substrates.

전해액 온도에 의한 구리 박막의 표면형상과 물성 변화 (Property and Surface Morphology of Copper Foil on the Various Temperature of Electrolyte)

  • 우태규;이만형;박은광;배태성;이민호;박일송;정광희;설경원
    • 대한금속재료학회지
    • /
    • 제47권4호
    • /
    • pp.256-260
    • /
    • 2009
  • This study examined the effects of plated temperature on the surface morphology and property of an electrodeposited copper foil. The morphology, crystal structure and electric characteristics of the electrodeposited copper foil were examined by scanning electron microscopy, X-ray diffraction, and a four-point probe, respectively. The surface roughness, crystal growth orientation and resistivity could be controlled using various temperature of electrolyte. Large particles were observed on the surface of the copper layer electroplated onto the $30^{\circ}C$. However, a uniform surface, lower resistivity and high flexibility were obtained when a $50^{\circ}C$ electrolyte was used.

나노급 두께의 Ni50Co50 복합 실리사이드의 적외선 흡수 특성 연구 (IR Absorption Property in NaNo-thick Nickel Cobalt Composite Silicides)

  • 송오성;김종률;최용윤
    • 대한금속재료학회지
    • /
    • 제46권2호
    • /
    • pp.88-96
    • /
    • 2008
  • Thermal evaporated 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films were deposited to examine the energy saving properties of silicides formed by rapid thermal annealing at temperature ranging from 500 to $1,100^{\circ}C$ for 40 seconds. Thermal evaporated 10 nm-Ni/(70 nm-poly)Si films were also deposited as a reference using the same method for depositing the 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films. A four-point probe was used to examine the sheet resistance. Transmission electron microscopy (TEM) and X-ray diffraction XRD were used to determine cross sectional microstructure and phase changes, respectively. UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were used to examine the near-infrared (NIR) and middle-infrared (MIR) absorbance. TEM analysis confirmed that the uniform nickel-cobalt composite silicide layers approximately 21 to 55 nm in thickness had formed on the single and polycrystalline silicon substrates as well as on the 25 to 100 nm thick nickel silicide layers. In particular, nickel-cobalt composite silicides showed a low sheet resistance, even after rapid annealing at $1,100^{\circ}C$. Nickel-cobalt composite silicide and nickel silicide films on the single silicon substrates showed similar absorbance in the near-IR region, while those on the polycrystalline silicon substrates showed excellent absorbance until the 1,750 nm region. Silicides on polycrystalline substrates showed high absorbance in the middle IR region. Nickel-cobalt composite silicides on the poly-Si substrates annealed at $1,000^{\circ}C$ superior IR absorption on both NIR and MIR region. These results suggest that the newly proposed $Ni_{50}Co_{50}$ composite silicides may be suitable for applications of IR absorption coatings.

첨가제에 의한 구리 박막의 표면형상과 물성변화 (Effect of Additives on the Physical Properties and Surface Morphology of Copper Foil)

  • 우태규;박일송;박은광;정광희;이현우;설경원
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.586-590
    • /
    • 2009
  • The effects of additives on the surface morphology and physical properties of copper electrodeposited on polyimide(PI) film were investigated here. Two kinds of additives, an activator(additive A) and a leveler(additive B),were used in this study. Electrochemical experiments, in conjunction with scanning electron microscopy(SEM), X-ray diffraction(XRD) and a four-point probe, were performed to characterize the morphology and mechanical characteristics of copper electrodeposited in the presence of the additives. The surface roughness, crystal growth orientation and resistivity could be controlled using various quantities of additive B. High resistivity and lower peel strength were observed on the surface of the copper layer electroplated onto the electrolyte with no additive B. However, a uniform surface, lower resistivity and high flexibility were obtained with a combination of 20 ppm of additive A and 100 ppm of additive B.

Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성 (Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD)

  • 최용윤;김건일;박종성;송오성
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

폴리이미드 기판에 극저온 Catalytic-CVD로 제조된 니켈실리사이드와 실리콘 나노박막 (Nano-thick Nickel Silicide and Polycrystalline Silicon on Polyimide Substrate with Extremely Low Temperature Catalytic CVD)

  • 송오성;최용윤;한정조;김건일
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.321-328
    • /
    • 2011
  • The 30 nm-thick Ni layers was deposited on a flexible polyimide substrate with an e-beam evaporation. Subsequently, we deposited a Si layer using a catalytic CVD (Cat-CVD) in a hydride amorphous silicon (${\alpha}$-Si:H) process of $T_{s}=180^{\circ}C$ with varying thicknesses of 55, 75, 145, and 220 nm. The sheet resistance, phase, degree of the crystallization, microstructure, composition, and surface roughness were measured by a four-point probe, HRXRD, micro-Raman spectroscopy, FE-SEM, TEM, AES, and SPM. We confirmed that our newly proposed Cat-CVD process simultaneously formed both NiSi and crystallized Si without additional annealing. The NiSi showed low sheet resistance of < $13{\Omega}$□, while carbon (C) diffused from the substrate led the resistance fluctuation with silicon deposition thickness. HRXRD and micro-Raman analysis also supported the existence of NiSi and crystallized (>66%) Si layers. TEM analysis showed uniform NiSi and silicon layers, and the thickness of the NiSi increased as Si deposition time increased. Based on the AES depth profiling, we confirmed that the carbon from the polyimide substrate diffused into the NiSi and Si layers during the Cat-CVD, which caused a pile-up of C at the interface. This carbon diffusion might lessen NiSi formation and increase the resistance of the NiSi.

전기 방사를 이용한 고분자/금속산화물 복합소재 기반의 투명전극 제조 및 특성 분석 (Preparation and Characterization of transparent electrode based on polymer/metal oxide composite via electrospinning)

  • 강혜주;정현택
    • 한국응용과학기술학회지
    • /
    • 제38권6호
    • /
    • pp.1553-1560
    • /
    • 2021
  • 본 연구는 나노섬유를 제조하는데 빠르고 효과적인 전기방사법을 이용하여 PVA(Polyvinyl alcohol)와 AgNO3를 혼합하여 제조한 용액을 금속산화물 기반 나노 섬유로 이루어진 투명 전극을 제조하고 그 특성을 분석하였다. PVA/AgNO3 혼합 용액을 전기방사법을 이용하여 유리기판 위에 나노섬유 구조체 형태로 방사하여 250 ℃에서 2 시간 동안 열처리 과정을 통해 전기 전도성이 향상된 은나노 섬유 기반 투명 전극을 제조하였다. 제조된 투명전극은 four-point probe 장비를 이용하여 전기적 특성을 분석하였으며, UV - Vis spectrophotometer 를 이용하여 제조된 투명전극의 투과도를 확인하였다. 또한, Scanning Electron Microscopy (SEM)과 Energy Dispersive Spectrometer(EDS)를 통해 은 나노 섬유의 표면 특성과 성분을 확인하였다. 이러한 분석들을 통해, 전기 방사 시간에 따른 면 저항과 투과도의 최적화된 조건을 확인할 수 있었으며, 은 나노 섬유로 이루어진 투명 전극은 전기적, 광학적, 기계적 특성이 우수하여 태양전지, 디스플레이, 터치스크린과 같은 차세대 유연 디스플레이에 적용 가능성을 보여주었다.

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

롤투롤시스템을 이용하여 PET 필름위에 제조된 SiO2-ITO 박막의 색도(b*), 면저항과 투과도 연구 (Chromaticity(b*), Sheet Resistance and Transmittance of SiO2-ITO Thin Films Deposited on PET Film by Using Roll-to-Roll Sputter System)

  • 박미영;김정수;강보갑;김혜영;김후식;임우택;최식영
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.255-262
    • /
    • 2011
  • This paper has relatively high technical standard and experimental skill. The fabrication of TCO film with high transparency, low resistance and low chromaticity require exact control of several competing factors. This paper has resolved these problems reasonably well, thus recommended for publication. Indium tin oxide(ITO) thin films were by D.C. magnetron roll-to-roll sputter system utilizing ITO and $SiO_2$ targets of ITO and $SiO_2$. In this experiment, the effect of D.C. power, winding speed, and oxygen flow rate on electrical and optical properties of ITO thin films were investigated from the view point of sheet resistance, transmittance, and chromaticity($b^*$). The deposition of $SiO_2$ was performed with RF power of 400W, Ar gas of 50 sccm and the deposition of ITO, DC power of 600W, Ar gas of 50 sccm, $O^2$ gas of 0.2 sccm, and winding speed of 0.56m/min. High quality ITO thin films without $SiO_2$ layer had chromaticity of 2.87, sheet resistivity of 400 ohm/square, and transmittance of 88% and $SiO_2$-doped ITO Thin film with chromaticity of 2.01, sheet resistivity of 709 ohm/square, and transmittance of more than 90% were obtained. As a result, $SiO_2$ was coated on PET before deposition of ITO, their chromaticity($b^*$) and transmittance were better than previous results of ITO films. These results show that coating of $SiO_2$ induced arising chromaticity($b^*$) and transmittance. If the thickness of $SiO_2$ is controlled, sheet resistance value of ITO film will be expected to be better for touch screen. A four point probe and spectrophotometer are used to investigate the properties of ITO thin films.