DOI QR코드

DOI QR Code

Property of Nano-thick Silicon Films Fabricated by Low Temperature Inductively Coupled Plasma Chemical Vapor Deposition Process

저온 ICP-CVD 공정으로 제조된 나노급 실리콘 박막의 물성

  • Shen, Yun (Department of Materials Science and Engineering, University of Seoul) ;
  • Sim, Gapseop (Department of Materials Science and Engineering, University of Seoul) ;
  • Choi, Yongyoon (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 신운 (서울시립대학교 신소재공학과) ;
  • 심갑섭 (서울시립대학교 신소재공학과) ;
  • 최용윤 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2010.10.27
  • Published : 2011.04.25

Abstract

100 nm-thick hydrogenated amorphous silicon $({\alpha}-Si:H)$ films were deposited on a glass and glass/30 nm Ni substrates by inductively-coupled plasma chemical vapor deposition (ICP-CVD) at temperatures ranging from 100 to $550^{\circ}C$. The sheet resistance, microstructure, phase transformation and surface roughness of the films were characterized using a four-point probe, AFM (atomic force microscope), TEM (transmission electron microscope), AES (Auger electron spectroscopy), HR-XRD(high resolution X-ray diffraction), and micro-Raman spectroscopy. A nano-thick NiSi phase was formed at substrate temperatures >$400^{\circ}C$. AFM confirmed that the surface roughness did not change as the substrate temperature increased, but it increased abruptly to 6.6 nm above $400^{\circ}C$ on the glass/30 nm Ni substrates. HR-XRD and micro-Raman spectroscopy showed that all the Si samples were amorphous on the glass substrates, whereas crystalline silicon appeared at $550^{\circ}C$ on the glass/30 nm Ni substrates. These results show that crystalline NiSi and Si can be prepared simultaneously on Ni-inserted substrates.

Keywords

Acknowledgement

Supported by : 서울시립대학교

References

  1. Y. Nakano, S. Goya, T. Watanabe, N. Yamashita, and Y. Yonekura, Thin Solid Films. 506, 33 (2006).
  2. I. O. Parm, A. K. Kima, D. G. Lima, J. H. Leea, J. H. Heoa, J. Kimb, D. S. Kimb, S. H. Leeb, and J. Yia, Sol. Energy Materials. Sol. Cells. 74, 97 (2002). https://doi.org/10.1016/S0927-0248(02)00053-3
  3. H. C. Lee, S. P. Hong, S. K. Kang, and G. Y. Yeom, Thin Solid Films. 517, 4100 (2009). https://doi.org/10.1016/j.tsf.2009.01.140
  4. Y. J. Lee, K. N. Kim, B. K. Song, and G. Y. Yeom, Thin Solid Films. 435, 419 (2003).
  5. K. N. Kim, J. H. Lim, and G. Y. Yeom, Appl. Phys. Lett. 89, 251501 (2006). https://doi.org/10.1063/1.2405417
  6. K. N. Kim, S. J. Jung, Y. J. Lee, G.Y. Yeom, S. H. Lee, and J. K. Lee, J. Appl. Phys. 97, 063302 (2005). https://doi.org/10.1063/1.1861136
  7. H. B. Kim, H. C. Lee, K. N. Kim, and G. Y. Yeom, J. Vac. Sci. Technol. 26, 842 (2008).
  8. Y. J. Lee, K. N. Kim, B. K. Song, and G. Y. Yeom, Thin Solid Films. 453, 275 (2003).
  9. K. Nakazawa and K. Tanaka, J. Appl. Phys. 68, 1029 (1990). https://doi.org/10.1063/1.346740
  10. S. Ashid, M. R. Shim, and M. A. Lieberman, J. Vac. Sci. Technol. 4, 391 (1996).
  11. S. Miyagawa, S. Namo, K. Saitoh, K. Baba, and Y. Miyagawa, Surf, Coat. Technol. 128, 206 (2000).
  12. H. C. Lee, G. Y. Yeom, Lee. J. K. Shin, S. I. Baik, and Y. W. Kim, J. Kor. Phys Soc. 47, 277 (2005).
  13. Y. J. Lee, K. N. Kim, B. K. Song, and G. Y. Yeom, Mater. Sci. Semicond. Process. 5, 419 (2003).
  14. N. Kosku, H. Murakami, S. Higashi, and S. Miyazaki, Surface Sci. 244, 39 (2005) . https://doi.org/10.1016/j.apsusc.2004.10.063
  15. J. X. Wang, P. Q. Gao, M. Yin, Y. L. Qin, H. Q. Yan, J. S. Li, S. L. Peng, and D. Y. He, J. Alloys and Compounds. 481, 278 (2009). https://doi.org/10.1016/j.jallcom.2009.03.120
  16. S. M. Han, S. J. Kim, J. H. Park, S. H. Choi, and M. K. Han, J. Non-Crystalline Solids. 354, 2264 (2008).
  17. O. S. Song, K. I. Kim, and Y. Y. Choi, Kor. J. Met. Mater. 48, 660 (2010).
  18. R. D. Knox, V. Dalal, B. Moradi, and G. Chumanov, J. Vac. Sci. Technol. 11, 1896 (1993). https://doi.org/10.1116/1.578519