Effect of Additives on the Physical Properties and Surface Morphology of Copper Foil

첨가제에 의한 구리 박막의 표면형상과 물성변화

  • Woo, Tae-Gyu (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Park, Il-Song (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Park, Eun-Kwang (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Jung, Kwang-Hee (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Lee, Hyun-Woo (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Seol, Kyeong-Won (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University)
  • 우태규 (전북대학교 공과대학 신소재공학부) ;
  • 박일송 (전북대학교 공과대학 신소재공학부) ;
  • 박은광 (전북대학교 공과대학 신소재공학부) ;
  • 정광희 (전북대학교 공과대학 신소재공학부) ;
  • 이현우 (전북대학교 공과대학 신소재공학부) ;
  • 설경원 (전북대학교 공과대학 신소재공학부)
  • Received : 2009.03.25
  • Published : 2009.09.25

Abstract

The effects of additives on the surface morphology and physical properties of copper electrodeposited on polyimide(PI) film were investigated here. Two kinds of additives, an activator(additive A) and a leveler(additive B),were used in this study. Electrochemical experiments, in conjunction with scanning electron microscopy(SEM), X-ray diffraction(XRD) and a four-point probe, were performed to characterize the morphology and mechanical characteristics of copper electrodeposited in the presence of the additives. The surface roughness, crystal growth orientation and resistivity could be controlled using various quantities of additive B. High resistivity and lower peel strength were observed on the surface of the copper layer electroplated onto the electrolyte with no additive B. However, a uniform surface, lower resistivity and high flexibility were obtained with a combination of 20 ppm of additive A and 100 ppm of additive B.

Keywords

References

  1. T. G. Chung, Y. H. Kim, and J. G. Na, J. Kor. Inst. Met. & Mater. 29, 1097 (1991)
  2. K. H. Hwang, K. I. Lee, S. K. Joo, and T. Kang, J. Kor. Associ. Cryst. Growth 1, 80 (1991)
  3. S. M. Sze, VLSI Technology, 2nd Ed, NcGraw Hill, p.373 (1988)
  4. G. E. McGuire, Semiconductor Materials and Process Handbook, Noyes Publication, p. 587 (1988)
  5. M. L. Sartorelli, A. Q. Schervenski, R. G. Delatorre, and P. Klauss, Phys. Stat. Sol. 187, 91 (2001) https://doi.org/10.1002/1521-396X(200109)187:1<91::AID-PSSA91>3.0.CO;2-9
  6. T. G. Woo, I. S. Park, H. W. Lee, and K. W. Seol, Kor. J. Mater. Res. 16, 11 (2006) https://doi.org/10.3740/MRSK.2006.16.1.011
  7. H. J. Kang, P. N. Park, S. J. Park, and S. Y. Choi, Electro. Technol. Res. 203, 8 (2003)
  8. P. V. Brande and R. Winand, Surf. Coat. Technol. 52, 1 (1992) https://doi.org/10.1016/0257-8972(92)90365-H
  9. Z. Zhou and T. J. O'Keefe, J. Appl. Electroch. 28, 461 (1998) https://doi.org/10.1023/A:1003209009910
  10. J. J. Yang, Y. L. Huang, and K. W. Xu, Surf. Coat. Technol. 201, 5574 (2007) https://doi.org/10.1016/j.surfcoat.2006.07.227
  11. P. Stantke, JOM, April, 19 (2002) https://doi.org/10.1007/BF02701651
  12. S. Yoshimura, S. Yoshihara, T. Shirakashi, and E. Sato, Electrochim. Acta 39, 589 (1994) https://doi.org/10.1016/0013-4686(94)80105-3
  13. A. Ibanez and E. Fatas, Surf. Coat. Technol. 191, 7 (2005) https://doi.org/10.1016/j.surfcoat.2004.05.001
  14. H. S. Lee, H. S. Kim, and C. M. Lee, J. Kor. Inst. Met. & Mater. 39, 920 (2001)
  15. H. S. Lee, D. K. Kwon, H. A. Park, and C. M. Lee, Kor. J. Mater. Res. 13, 174 (2003) https://doi.org/10.3740/MRSK.2003.13.3.174
  16. C. H. Yang, S. C. Lee, J. M. Wu, and T. C. Lin, Appl. Surf. Sci. 252, 1818 (2005) https://doi.org/10.1016/j.apsusc.2005.03.182